Skip to main content

AI Researchers, Video Games Are Your Friends!

  • Conference paper
  • First Online:
Book cover Computational Intelligence (IJCCI 2015)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 669))

Included in the following conference series:

Abstract

If you are an artificial intelligence researcher, you should look to video games as ideal testbeds for the work you do. If you are a video game developer, you should look to AI for the technology that makes completely new types of games possible. This chapter lays out the case for both of these propositions. It asks the question “what can video games do for AI”, and discusses how in particular general video game playing is the ideal testbed for artificial general intelligence research. It then asks the question “what can AI do for video games”, and lays out a vision for what video games might look like if we had significantly more advanced AI at our disposal. The chapter is based on my keynote at IJCCI 2015, and is written in an attempt to be accessible to a broad audience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  3. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  5. Barkow, J.H., Cosmides, L., Tooby, J.: The Adapted Mind: Evolutionary Psychology and the Generation of Culture. Oxford University Press, New York (1996)

    Google Scholar 

  6. Buss, D.: Evolutionary Psychology: The New Science of the Mind. Psychology Press, Hove (2015)

    Book  Google Scholar 

  7. Arkin, R.: Behavior-Based Robotics. The MIT Press, Cambridge (1998)

    Google Scholar 

  8. Brooks, R.: Intelligence without representation. Artif. Intell. 47, 139–159 (1991)

    Article  Google Scholar 

  9. Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)

    Google Scholar 

  10. Turing, A.M., Bates, M., Bowden, B., Strachey, C.: Digital computers applied to games. Faster than Thought 101, 390 (1953)

    Google Scholar 

  11. Newell, A., Shaw, J.C., Simon, H.A.: Chess-playing programs and the problem of complexity. IBM J. Res. Dev. 2, 320–335 (1958)

    Article  MathSciNet  Google Scholar 

  12. Samuel, A.: Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3, 210–229 (1959)

    Article  MathSciNet  Google Scholar 

  13. Campbell, M., Hoane, A.J., Hsu, F.-H.: Deep blue. Artif. Intell. 134, 57–83 (2002)

    Article  MATH  Google Scholar 

  14. Newborn, M.: Kasparov vs. Deep Blue. Computer Chess Comes of Age. Springer, New York (1997)

    Book  Google Scholar 

  15. Lee, C.S., Wang, M.H., Chaslot, G., Hoock, J.B., Rimmel, A., Teytaud, O., Tsai, S.R., Hsu, S.C., Hong, T.P.: The computational intelligence of MoGo revealed in Taiwan’s computer go tournaments. IEEE Trans. Comput. Intell. AI Games 1, 73–89 (2009)

    Article  Google Scholar 

  16. Müller, M.: Computer go. Artif. Intell. 134, 145–179 (2002)

    Article  MATH  Google Scholar 

  17. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016)

    Article  Google Scholar 

  18. Karakovskiy, S., Togelius, J.: The Mario UI benchmark and competitions. IEEE Trans. Comput. Intell. AI Games 4, 55–67 (2012)

    Article  Google Scholar 

  19. Togelius, J., Shaker, N., Karakovskiy, S., Yannakakis, G.N.: The Mario AI championship 2009–2012. AI Mag. 34, 89–92 (2013)

    Google Scholar 

  20. Ontanón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., Preuss, M.: A survey of real-time strategy game AI research and competition in starcraft. IEEE Trans. Comput. Intell. AI Games 5, 293–311 (2013)

    Article  Google Scholar 

  21. Loiacono, D., Lanzi, P.L., Togelius, J., Onieva, E., Pelta, D.A., Butz, M.V., Lonneker, T.D., Cardamone, L., Perez, D., Sáez, Y., et al.: The 2009 simulated car racing championship. IEEE Trans. Comput. Intell. AI Games 2, 131–147 (2010)

    Article  Google Scholar 

  22. Rohlfshagen, P., Lucas, S.M.: Ms Pac-Man versus ghost team CEC 2011 competition. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 70–77. IEEE (2011)

    Google Scholar 

  23. Lu, F., Yamamoto, K., Nomura, L.H., Mizuno, S., Lee, Y., Thawonmas, R.: Fighting game artificial intelligence competition platform. In: 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE), pp. 320–323. IEEE (2013)

    Google Scholar 

  24. Renz, J.: AIBIRDS: the angry birds artificial intelligence competition. In: AAAI, pp. 4326–4327 (2015)

    Google Scholar 

  25. Togelius, J.: How to run a successful game-based AI competition. IEEE Trans. Comput. Intell. AI Games 8(1), 95–100 (2014)

    Article  Google Scholar 

  26. Legg, S., Hutter, M.: Universal intelligence: a definition of machine intelligence. Minds Mach. 17, 391–444 (2007)

    Article  Google Scholar 

  27. Schaul, T., Togelius, J., Schmidhuber, J.: Measuring intelligence through games. Arxiv preprint arXiv:1109.1314 (2011)

  28. Bellemare, M., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: an evaluation platform for general agents. Arxiv preprint arXiv:1207.4708 (2012)

  29. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)

    Article  Google Scholar 

  30. Perez, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S., Couëtoux, A., Lee, J., Lim, C.U., Thompson, T.: The 2014 general video game playing competition. IEEE Trans. Comput. Intell. AI Games (2015)

    Google Scholar 

  31. Perez-Liebana, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S.M.: General video game AI: Competition, challenges and opportunities. In: AAAI (2016)

    Google Scholar 

  32. Ebner, M., Levine, J., Lucas, S.M., Schaul, T., Thompson, T., Togelius, J.: Towards a video game description language (2013)

    Google Scholar 

  33. Schaul, T.: A video game description language for model-based or interactive learning. In: Proceedings of the IEEE Conference on Computational Intelligence in Games, Niagara Falls. IEEE Press (2013)

    Google Scholar 

  34. Browne, C., Maire, F.: Evolutionary game design. IEEE Trans. Comput. Intell. AI Games 2, 1–16 (2010)

    Article  Google Scholar 

  35. Nelson, M., Mateas, M.: Towards automated game design. In: Procedings of the 10th Congress of the Italian Association for Artificial Intelligence (2007)

    Google Scholar 

  36. Togelius, J., Schmidhuber, J.: An experiment in automatic game design. In: Proceedings of the IEEE Symposium on Computational Intelligence and Games (2008)

    Google Scholar 

  37. Cook, M., Colton, S.: Multi-faceted evolution of simple arcade games. In: IEEE Conference on Computational Intelligence in Games, pp. 289–296 (2011)

    Google Scholar 

  38. Zook, A., Riedl, M.O.: Automatic game design via mechanic generation. In: AAAI, pp. 530–537 (2014)

    Google Scholar 

  39. Isaksen, A., Gopstein, D., Togelius, J., Nealen, A.: Discovering unique game variants. In: Computational Creativity and Games Workshop at the 2015 International Conference on Computational Creativity (2015)

    Google Scholar 

  40. Nielsen, T.S., Barros, G.A.B., Togelius, J., Nelson, M.J.: General video game evaluation using relative algorithm performance profiles. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 369–380. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16549-3_30

    Chapter  Google Scholar 

  41. Nielsen, T.S., Barros, G.A., Togelius, J., Nelson, M.J.: Towards generating arcade game rules with VGDL. In: IEEE Conference on Computational Intelligence in Games (2015)

    Google Scholar 

  42. Shaker, N., Togelius, J., Nelson, M.J.: Procedural content generation in games: a textbook and an overview of current research. In: A Textbook and an Overview of Current Research, Procedural Content Generation in Games (2015)

    Google Scholar 

  43. Togelius, J., Yannakakis, G., Stanley, K., Browne, C.: Search-based procedural content generation: a taxonomy and survey. IEEE Trans. Comput. Intell. AI Games (2011)

    Google Scholar 

  44. Smith, A.M., Mateas, M.: Answer set programming for procedural content generation: a design space approach. IEEE Trans. Comput. Intell. AI Games 3, 187–200 (2011)

    Article  Google Scholar 

  45. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

    Article  Google Scholar 

  46. Perez, D., Samothrakis, S., Lucas, S., Rohlfshagen, P.: Rolling horizon evolution versus tree search for navigation in single-player real-time games. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 351–358. ACM (2013)

    Google Scholar 

  47. Graft, K.: When artificial intelligence in video games becomes artificially intelligent. Gamasutra (2015)

    Google Scholar 

  48. Togelius, J., Nelson, M.J., Liapis, A.: Characteristics of generatable games. In: Foundations of Digital Games, vol. 9, p. 20 (2014)

    Google Scholar 

  49. Font Fernández, J.M., Manrique Gamo, D., Mahlmann, T., Togelius, J.: Towards the automatic generation of card games through grammar-guided genetic programming. In: EvoApps (2013)

    Google Scholar 

  50. Togelius, J., Champandard, A.J., Lanzi, P.L., Mateas, M., Paiva, A., Preuss, M., Stanley, K.O.: Procedural content generation: goals, challenges and actionable steps. Dagstuhl Follow-Ups 6 (2013)

    Google Scholar 

  51. Yannakakis, G.N., Togelius, J.: Experience-driven procedural content generation. IEEE Trans. Affect. Comput. 2, 147–161 (2011)

    Article  Google Scholar 

  52. Yannakakis, G.N., Spronck, P., Loiacono, D., André, E.: Player modeling. Dagstuhl Follow-Ups 6 (2013)

    Google Scholar 

  53. Smith, A.M., Lewis, C., Hullett, K., Smith, G., Sullivan, A.: An inclusive taxonomy of player modeling. Technical report, UCSC-SOE-11-13, University of California, Santa Cruz (2011)

    Google Scholar 

  54. Pedersen, C., Togelius, J., Yannakakis, G.N.: Modeling player experience for content creation. IEEE Trans. Comput. Intell. AI Games 2, 54–67 (2010)

    Article  Google Scholar 

  55. Mahlmann, T., Drachen, A., Togelius, J., Canossa, A., Yannakakis, G.N.: Predicting player behavior in tomb raider: underworld. In: 2010 IEEE Symposium on Computational Intelligence and Games (CIG), pp. 178–185. IEEE (2010)

    Google Scholar 

  56. Liapis, A., Yannakakis, G.N., Togelius, J.: Sentient sketchbook: computer-aided game level authoring. In: FDG, pp. 213–220 (2013)

    Google Scholar 

  57. Yannakakis, G.N., Liapis, A., Alexopoulos, C.: Mixed-initiative co-creativity. In: Proceedings of the 9th Conference on the Foundations of Digital Games (2014)

    Google Scholar 

  58. Shaker, N., Shaker, M., Togelius, J.: Evolving playable content for cut the rope through a simulation-based approach. In: AIIDE (2013)

    Google Scholar 

  59. Shaker, N., Shaker, M., Togelius, J.: Ropossum: an authoring tool for designing, optimizing and solving cut the rope levels. In: AIIDE (2013)

    Google Scholar 

  60. Hingston, P.: Believable bots. In: Hingston, P. (ed.) Can Computers Play Like People? Springer, Heidelberg (2012)

    Google Scholar 

  61. Shaker, N., Togelius, J., Yannakakis, G.N., Poovanna, L., Ethiraj, V.S., Johansson, S.J., Reynolds, R.G., Heether, L.K., Schumann, T., Gallagher, M.: The turing test track of the 2012 Mario AI championship: entries and evaluation. In: IEEE Conference on Computational Intelligence in Games (CIG), pp. 1–8. IEEE (2013)

    Google Scholar 

  62. Ortega, J., Shaker, N., Togelius, J., Yannakakis, G.N.: Imitating human playing styles in super Mario Bros. Entertainment Comput. 4, 93–104 (2013)

    Article  Google Scholar 

  63. Yannakakis, G.N., Togelius, J.: A panorama of artificial and computational intelligence in games. IEEE Trans. Comput. Intell. AI Games 7(4), 317–335 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Togelius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Togelius, J. (2017). AI Researchers, Video Games Are Your Friends!. In: Merelo, J.J., et al. Computational Intelligence. IJCCI 2015. Studies in Computational Intelligence, vol 669. Springer, Cham. https://doi.org/10.1007/978-3-319-48506-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48506-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48504-1

  • Online ISBN: 978-3-319-48506-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics