Skip to main content

Coupled Plasmonic Nanoantennas

  • Conference paper
  • First Online:
Book cover Intelligent Data Analysis and Applications (ECC 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 535))

  • 907 Accesses

Abstract

The electromagnetic coupling between metal nanoparticles lead to a variety of fundamental studies and practical applications in plasmonics. For example, by strong coupling between metallic nanostructures, plasmonic antennas are able to concentrate and re-emit light in a controllable way. A variety of structures of optical antennas have been investigated in the past decade. In this review, we will discuss the coupled plasmonic nanoantennas from the typical applications point of view, i.e., control of local intensity, control of emission direction, control of far-field polarization, and outlook the corresponding impacts in understanding physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greffet, J.J.: Nanoantennas for light emission. Science 308, 1561–1563 (2005)

    Article  Google Scholar 

  2. Mühlschlegel, P., Eisler, H.J., Martin, O.J.F., Hecht, B., Pohl, D.W.: Resonant optical antennas. Science 308, 1607–1609 (2005)

    Article  Google Scholar 

  3. Shegai, T., Miljkovic, V.D., Bao, K., Xu, H.X., Nordlander, P., Johansson, P., Kall, M.: Unidirectional broadband light emission from supported plasmonic nanowires. Nano Lett. 11, 706–711 (2011)

    Article  Google Scholar 

  4. Schnell, M., Garcia-Etxarri, A., Huber, A.J., Crozier, K., Aizpurua, J., Hillenbrand, R.: Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat. Photonics 3, 287–291 (2009)

    Article  Google Scholar 

  5. Giannini, V., Fernandez-Dominguez, A.I., Heck, S.C., Maier, S.A.: Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888–3912 (2011)

    Article  Google Scholar 

  6. Xu, H.X., Bjerneld, E.J., Käll, M., Börjesson, L.: Spectroscopy of single hemoglobin molecules by surface enhanced ranman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999)

    Article  Google Scholar 

  7. Zhang, Z., Weber-Bargioni, A., Wu, S.W., Dhuey, S., Cabrini, S., Schuck, P.J.: Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter. Nano Lett. 9, 4505–4509 (2009)

    Article  Google Scholar 

  8. Fromm, D.P., Sundaramurthy, A., Schuck, P.J., Kino, G., Moerner, W.E.: Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible. Nano Lett. 4, 957–961 (2004)

    Article  Google Scholar 

  9. Ghenuche, P., Cherukulappurath, S., Taminiau, T.H., van Hulst, N.F., Quidant, R.: Spectroscopic mode mapping of resonant plasmon nanoantennas. Phys. Rev. Lett. 101, 116805 (2008)

    Article  Google Scholar 

  10. Shegai, T., Li, Z.P., Dadosh, T., Zhang, Z., Xu, H.X., Haran, G.: Managing light polarization via plasmon–molecule interactions within an asymmetric metal nanoparticle trimer. Proc. Nat. Acad. Sci. U.S.A. 105, 16448–16453 (2008)

    Article  Google Scholar 

  11. Curto, A.G., Volpe, G., Taminiau, T.H., Kreuzer, M.P., Quidant, R., van Hulst, N.F.: Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010)

    Article  Google Scholar 

  12. Ringler, M., Schwemer, A., Wunderlich, M., Nichtl, A., Kurzinger, K., Klar, T.A., Feldmann, J.: Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 100, 203002 (2008)

    Article  Google Scholar 

  13. Kinkhabwala, A., Yu, Z.F., Fan, S.H., Avlasevich, Y., Mullen, K., Moerner, W.E.: Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3, 654–657 (2009)

    Article  Google Scholar 

  14. Farahani, J.N., Pohl, D.W., Eisler, H.J., Hecht, B.: Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005)

    Article  Google Scholar 

  15. Knight, M.W., Grady, N.K., Bardhan, R., Hao, F., Nordlander, P., Halas, N.J.: Nanoparticle-mediated coupling of light into a nanowire. Nano Lett. 7, 2346–2350 (2007)

    Article  Google Scholar 

  16. Li, Z.P., Hao, F., Huang, Y.Z., Fang, Y.R., Nordlander, P., Xu, H.X.: Directional light emission from propagating surface plasmons of silver nanowires. Nano Lett. 9, 4383–4386 (2009)

    Article  Google Scholar 

  17. Li, Z.P., Zhang, S.P., Halas, N.J., Nordlander, P., Xu, H.X.: Coherent modulation of propagating plasmons in silver-nanowire-based structures. Small (Weinheim an der Bergstrasse, Germany) 7, 593–596 (2011)

    Article  Google Scholar 

  18. Li, Z.P., Bao, K., Fang, Y.R., Guan, Z.Q., Halas, N.J., Nordlander, P., Xu, H.X.: Effect of a proximal substrate on plasmon propagation in silver nanowires. Phys. Rev. B 82, 241402 (2010)

    Article  Google Scholar 

  19. Wiley, B.J., Chen, Y.C., McLellan, J.M., Xiong, Y.J., Li, Z.Y., Ginger, D., Xia, Y.N.: Synthesis and optical properties of silver nanobars and nanorice. Nano Lett. 7, 1032–1036 (2007)

    Article  Google Scholar 

  20. Liang, H.Y., Yang, H.X., Wang, W.Z., Li, J.Q., Xu, H.X.: High-yield uniform synthesis and microstructure-determination of rice-shaped silver nanocrystals. J. Am. Chem. Soc. 131, 6068–6069 (2009)

    Article  Google Scholar 

  21. Langhammer, C., Kasemo, B., Zoric, I.: Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios. J. Chem. Phys. 126, 194702–194711 (2007)

    Article  Google Scholar 

  22. Rang, M., Jones, A.C., Zhou, F., Li, Z.Y., Wiley, B.J., Xia, Y.N., Raschke, M.B.: Optical near-field mapping of plasmonic nanoprisms. Nano Lett. 8, 3357–3363 (2008)

    Article  Google Scholar 

  23. Nelayah, J., Kociak, M., Stephan, O., de Abajo, F.J.G., Tence, M., Henrard, L., Taverna, D., Pastoriza-Santos, I., Liz-Marzan, L.M., Colliex, C.: Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007)

    Article  Google Scholar 

  24. Liang, H.Y., Li, Z.P., Wang, W.Z., Wu, Y.S., Xu, H.X.: Highly surface-roughened “Flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced raman scattering. Adv. Mater. 21, 4614–4618 (2009)

    Article  Google Scholar 

  25. Svedberg, F., Li, Z.P., Xu, H.X., käll, M.: Creating hot nanoparticle pairs for surface-enhanced raman spectroscopy through optical manipulation. Nano Lett. 6, 2639–2641 (2006)

    Google Scholar 

  26. Jin, R.C., Cao, Y.W., Mirkin, C.A., Kelly, K.L., Schatz, G.C., Zheng, J.G.: Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001)

    Article  Google Scholar 

  27. Aizpurua, J., Hanarp, P., Sutherland, D.S., Kall, M., Bryant, G.W., de Abajo, F.J.G.: Optical properties of gold nanorings. Phys. Rev. Lett. 90, 057401 (2003)

    Article  Google Scholar 

  28. Hao, F., Nehl, C.L., Hafner, J.H., Nordlander, P.: Plasmon resonances of a gold nanostar. Nano Lett. 7, 729–732 (2007)

    Article  Google Scholar 

  29. Raether, H.H.: Surface Plasmons. Springer (1988)

    Google Scholar 

  30. Lee, K.G., Kihm, H.W., Kihm, J.E., Choi, W.J., Kim, H., Ropers, C., Park, D.J., Yoon, Y.C., Choi, S.B., Woo, H., Kim, J., Lee, B., Park, Q.H., Lienau, C., Kim, D.S.: Vector field microscopic imaging of light. Nat. Photonics 1, 53–56 (2007)

    Article  Google Scholar 

  31. Schuck, P.J., Fromm, D.P., Sundaramurthy, A., Kino, G.S., Moerner, W.E.: Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005)

    Article  Google Scholar 

  32. Taminiau, T.H., Moerland, R.J., Segerink, F.B., Kuipers, L., van Hulst, N.F.: lambda/4 Resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett. 7, 28–33 (2007)

    Article  Google Scholar 

  33. Wang, W., Li, Z.P., Gu, B.H., Zhang, Z.Y., Xu, H.X.: Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced raman scattering. ACS Nano 3, 3493–3496 (2009)

    Article  Google Scholar 

  34. Li, Z.P., Käll, M., Xu, H.: Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam. Phys. Rev. B 77, 085412 (2008)

    Article  Google Scholar 

  35. Lal, S., Clare, S.E., Halas, N.J.: Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008)

    Article  Google Scholar 

  36. Loo, C., Lowery, A., Halas, N.J., West, J., Drezek, R.: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709–711 (2005)

    Article  Google Scholar 

  37. Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)

    Article  Google Scholar 

  38. Kirchain, R., Kimerling, L.: A roadmap for nanophotonics. Nat. Photonics 1, 303–305 (2007)

    Article  Google Scholar 

  39. García de Abajo, F.J., Cordon, J., Corso, M., Schiller, F., Ortega, J.E.: Lateral engineering of surface states - towards surface-state nanoelectronics. Nanoscale 2, 717–721 (2010)

    Article  Google Scholar 

  40. Shegai, T., Chen, S., Miljkovic, V.D., Zengin, G., Johansson, P., Kall, M.: A bimetallic nanoantenna for directional colour routing. Nat. Commun. 2, 2749–2763 (2011)

    Article  Google Scholar 

  41. Li, Z.P., Shegai, T., Haran, G., Xu, H.X.: Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission. ACS Nano 3, 637–642 (2009)

    Article  Google Scholar 

  42. Le Ru, E.C., Meyer, M., Etchegoin, P.G.: Proof of single-mokeule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J. Phys. Chem. B 110, 1944–1948 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Startup Foundation of Fujian University of Technology (GY-Z160049), the Mid-youth Project of Education Bureau of Fujian Province (JAT160331), and the Fujian Provincial Major Research and Development Platform for the Technology of Numerical Control Equipment (2014H2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hancong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, H. (2017). Coupled Plasmonic Nanoantennas. In: Pan, JS., Snášel, V., Sung, TW., Wang, X. (eds) Intelligent Data Analysis and Applications. ECC 2016. Advances in Intelligent Systems and Computing, vol 535. Springer, Cham. https://doi.org/10.1007/978-3-319-48499-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48499-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48498-3

  • Online ISBN: 978-3-319-48499-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics