Skip to main content

A Learning Approach to Hierarchical Features for Automatic Music Composition

  • Conference paper
  • First Online:
Intelligent Data Analysis and Applications (ECC 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 535))

  • 862 Accesses

Abstract

Artificial Evolution has shown great potential in the musical domain. One task in which Evolutionary techniques have shown special promise is the automatic music composition. This article describes the development of an algorithm for generating tonal melodies. The method employed does not entail any preset rule with respect to the musical grammar. It is based on a self-learning model that combines a Markov process, for the creation of concatenation rules of various sounds, with the Viterbi algorithm, for compliance with the musical syntax. The article is going to demonstrate the effectiveness of the method by means of some examples of its production and is going to indicate ways to improve the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miranda, E.R., Biles, J.A.: Evolutionary Computer Music, vol. 7. Springer, London (2007)

    Book  Google Scholar 

  2. Cambouropoulos, E.: How similar is similar? Musicae Scientiae. In: Discussion Forum 4B, pp. 7–24 (2009)

    Google Scholar 

  3. Della Ventura, M.: Evaluation of musical similarity on the symbolic level of the musical text. In: Proceedings of the 15th International Conference on Artificial Intelligence, Las Vegas, USA (2013)

    Google Scholar 

  4. Nielsen, R.: Musical Forms. Bongiovanni Editore (1961)

    Google Scholar 

  5. Baroni, M., Jacoboni, C., Dal monte, R.: The music rules. In: EDT/SidM (1999)

    Google Scholar 

  6. Cambouropoulos, E.: Markov Chains as an aid to computer-assisted composition. Musical Praxis 1(1), 41–52 (1994)

    Google Scholar 

  7. Cope, D.: Experiments in Musical Intelligence. A-R Editions Inc., WI (1996)

    Google Scholar 

  8. Thom, B.: An interactive improvisational music companion. In: Proceeding of the Fourth International Conference on Autonomous Agents, Barcelona, Spain, pp. 309–316 (2000)

    Google Scholar 

  9. Miranda, E.: Composing Music with Computers. Focal Press, Oxford (2001)

    Google Scholar 

  10. Rowe, R.: Machine Musicianship. MIT Press, Cambridge (2004)

    Google Scholar 

  11. Chan, M., Potter, J., Schubert, E.: Improving algorithmic music composition with machine learning. In: Proceedings of the 9th International Conference on Music Perception and Cognition, ICMPC (2006)

    Google Scholar 

  12. Lichtenwalter, R.N.: Lichtenwalter, K., Chawla, N.V.: Applying learning algorithms to music generation. In: Proceedings of the 4th Indian International Conference on Artificial Intelligence, IICAI (2009)

    Google Scholar 

  13. Della Ventura, M.: Automatic tonal music composition using functional harmony. In: Agarwal, N., Xu, K., Osgood, N. (eds.) SBP 2015. LNCS, vol. 9021, pp. 290–295. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16268-3_32

    Google Scholar 

  14. Smith, J.B.L., Chew, E.: A meta-analysis of the mirex strcture segmentation task. In: ISMIR (2013)

    Google Scholar 

  15. Schonber, A.: Theory of Harmony. University of California Press (1983)

    Google Scholar 

  16. Nielsen, R.: Le forme musicali. Dongiovanni Editore (1961)

    Google Scholar 

  17. Bent, I.: Analysis. Macmillan Publishers Ltd., London (1980)

    MATH  Google Scholar 

  18. Coltro, B.: Lezioni di armonia complementare. Zanibon (1979)

    Google Scholar 

  19. Bengio, Y.: Markovian models for sequential data. Neural Comput. Surv. 2, 129–162 (1999)

    Google Scholar 

  20. Bini, D.A., Latouche, G., Meini, B.: Numerical methods for structured Markov chains. Oxford University Press, New York (2005)

    Book  MATH  Google Scholar 

  21. Kazi, N., Bhatia, S.: Various artificial intelligence techniques for automated melody generation. Int. J. Eng. Res. Technol. 2, 1646–1652 (2013)

    Google Scholar 

  22. Viterbi, A.J.: Error bounds for convolutional codes and asymptotically optimum decoding algorithm. IEEE Transaction on Information Theory 13, 260–269 (1967)

    Article  MATH  Google Scholar 

  23. Viterbi, A.J.: Convolutional codes and their performance in communication systems. IEEE Trans. Commun. Technol. COM–19, 751–772 (1971)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Della Ventura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ventura, M.D. (2017). A Learning Approach to Hierarchical Features for Automatic Music Composition. In: Pan, JS., Snášel, V., Sung, TW., Wang, X. (eds) Intelligent Data Analysis and Applications. ECC 2016. Advances in Intelligent Systems and Computing, vol 535. Springer, Cham. https://doi.org/10.1007/978-3-319-48499-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48499-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48498-3

  • Online ISBN: 978-3-319-48499-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics