Skip to main content

3D Acquisition, Processing and Visualization of Archaeological Artifacts

The Samarra Collection of the Museum of Islamic Art in Berlin

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10058))

Abstract

In the past decade there has been a steady increase in research projects dealing with the three-dimensional documentation of cultural heritage. While 3D-scanners and photogrammetry are widely used for documenting historical monuments and archaeological excavations, the application of this technology within museums has not yet been established within the daily work routine. Even though the benefits of 3D-documentation are quite manifold, usually only outstanding artifacts are being recorded in this manner due to the complex workflows for deriving datasets, which can be used for further research and knowledge transfer. The interdisciplinary research project MOSYS-3D has been dealing with the entire workflow ranging from data acquisition, pre- and postprocessing steps as well as testing different forms of visualizations.

This is a preview of subscription content, log in via an institution.

References

  1. Boochs, F., Huxhagen, U., Kraus, K.: Potential of high-precision measuring techniques for the monitoring of surfaces from heritage objects. In: International Workshop In-situ Monitoring of Monumental Surfaces, Florence (2008)

    Google Scholar 

  2. Bandiera, A., Alfonso, C., Auriemma, R.: Active and passive 3D imaging technologies applied to waterlogged wooden artifacts from shipwrecks. Int. Arch. Photogrammetry, Remote Sens. Spat. Inf. Sci. 40(5), 15–23 (2015). Piano di Sorrento

    Article  Google Scholar 

  3. Hess, M., Korenberg, C., Ward, C., Robson, S., Entwistle, C.: Use of 3D laser scanning for monitoring the dimensional stability of a Byzantine ivory panel. Stud. Conserv. 60(sup1), 126–133 (2015). Sharjah

    Article  Google Scholar 

  4. Arbace, L., Sonnino, E., Callieri, M., Dellepiane, M., Fabbri, M., Idelson, A.I., Scopigno, R.: Innovative uses of 3D digital technologies to assist the restoration of a fragmented terracotta statue. J. Cult. Heritage 14(4), 332–345 (2013). Pisa

    Article  Google Scholar 

  5. Scopigno, R., Cignoni, P., Callieri, M., Ganovelli, F., Impoco, G., Pingi, P., Ponchio, F.: Using optically scanned 3D data in the restoration of Michelangelo’s David. In: Optical Metrology, pp. 44–53. International Society for Optics and Photonics, Munich (2003)

    Google Scholar 

  6. Wachowiak, M.J., Karas, B.V.: 3D scanning and replication for museum and cultural heritage applications. J. Am. Inst. Conserv. 48(2), 141–158 (2009)

    Article  Google Scholar 

  7. Saragusti, I., Karasik, A., Sharon, I., Smilansky, U.: Quantitative analysis of shape attributes based on contours and section profiles in artifact analysis. J. Archaeol. Sci. 32(6), 841–853 (2005). Israel

    Article  Google Scholar 

  8. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital Michelangelo project: 3D scanning of large statues. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (Siggraph 2000), pp. 131–144. ACM Press/Addison-Wesley Publishing Co., New York (2000)

    Google Scholar 

  9. Schäfer, A., Mara, H., Freudenreich, J., Bathow, C., Breuckmann, B., Bock, H.G.: Large scale Angkor style reliefs: high definition 3D acquisition and improved visualization using local feature estimation. In: Proceedings of the 39th Conference in Computer Applications and Quantitative Methods in Archaeology, pp. 70–80 (2011)

    Google Scholar 

  10. Pitzalis, D., Cignoni, P., Menu, M., Aitken, G.: 3D enhanced model from multiple data sources for the analysis of the cylinder seal of Ibni-Sharrum. In: VAST 2008: The 9th International Symposium on Virtual Reality, Archaeology, and Cultural Heritage, pp. 79–84. Eurographics Association, Braga (2008)

    Google Scholar 

  11. Fisseler, D., Weichert, F., Müller, G.G.W., Cammarosano, M.: Towards an interactive and automated script feature analysis of 3D scanned cuneiform tablets. In: Scientific Computing and Cultural Heritage, p. 16. Heidelberg (2013)

    Google Scholar 

  12. Zheng, S.Y., Huang, R.Y., Li, J., Wang, Z.: Reassembling 3D thin fragments of unknown geometry in cultural heritage. ISPRS Ann. Photogrammetry, Remote Sens. Spat. Inf. Sci. 2(5), 393–399 (2014). Riva del Garda

    Article  Google Scholar 

  13. Funkhouser, T., Shin, H., Toler-Franklin, C., Castañeda, A.G., Brown, B., Dobkin, D., Rusinkiewicz, S., Weyrich, T.: Learning how to match fresco fragments. J. Comput. Cult. Heritage (JOCCH) 4(2), 7–13 (2011). New York

    Google Scholar 

  14. Goren, A., Kohlmeyer, K., Bremer, T., Kai-Browne, A., Bebermeier, W., Öztürk, D., Öztürk, S., Müller, T.: The virtual archaeology project - towards an interactive multi-scalar 3D visualisation in computer game engines. In: Across Space and Time, Papers from the 41st Conference on Computer Applications and Quantitative Methods in Archaeology, pp. 386–400. A. Traviglia Amsterdam University Press, Amsterdam (2013)

    Google Scholar 

  15. Rizzi, A., Voltolini, F., Remondino, F., Girardi, S., Gonzo, L.: Optical measurement techniques for the digital preservation, documentation and analysis of cultural heritage. In: VIII Conference on Optical 3D Measurement Techniques, Zürich, pp. 16–24, vol. 2 (2007)

    Google Scholar 

  16. Hassani, F., Moser, M., Rampold, R., Wu, C.: Documentation of cultural heritage; techniques, potentials, and constraints. Int. Arch. Photogrammetry, Remote Sens. Spat. Inf. Sci. 40(5), 207–214 (2015). Göttingen

    Article  Google Scholar 

  17. Gasparovic, M., Malaric, I.: Increase of readability and accuracy of 3D models using fusion of close range photogrammetry and laser scanning. ISPRS - Int. Arch. Photogrammetry, Remote Sens. Spat. Inf. Sci. 1, 93–98 (2012). Melbourne

    Google Scholar 

  18. Boehler, W., Marbs, A.: 3D scanning instruments. In: Proceedings of the CIPA WG, vol. 6, pp. 9–18 (2002)

    Google Scholar 

  19. Iuliano, L., Minetola, P.: Rapid manufacturing of sculptures replicas: a comparison between 3D optical scanners. In: CIPA XX International Symposium, Turyn, pp. 384–389 (2005)

    Google Scholar 

  20. D’Apuzzo, N.: Overview of 3D surface digitization technologies in Europe. In: Proceedings of SPIE, the International Society for Optical Engineering, pp. 1–13. Society of Photo-Optical Instrumentation Engineers, San Jose (2006)

    Google Scholar 

  21. AICON 3D Systems breuckmann smartSCAN 3D- HE R5/C5 datasheet

    Google Scholar 

  22. Bernardini, F., Rushmeier, H.: The 3D model acquisition pipeline. Comput. Graph. Forum 21(2), 149–172 (2002). Blackwell Publishers Ltd.

    Article  Google Scholar 

  23. Farouk, M., El-Rifai, I., El-Tayar, S., El-Shishiny, H., Hosny, M., El-Rayes, M., Gomes, J., Giordano, F., Rushmeier, H., Bernardini, F., Magerlein, K.A.: Scanning and processing 3D objects for web display. In: 3DIM, Cairo, pp. 310–317 (2003)

    Google Scholar 

  24. Tucci, G., Cini, D., Nobile, A.: Effective 3D digitization of archaeological artifacts for interactive virtual museum. In: Proceedings of the 4th ISPRS International Workshop 3D-ARCH 2011, Florence (2011)

    Google Scholar 

  25. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Robotics-DL tentative, pp. 586–606. International Society for Optics and Photonics, Boston (1992)

    Google Scholar 

  26. AICON 3D Systems OPTOCAT Version 2016R1 User Manual

    Google Scholar 

  27. Mautz, R., Tilch, S.: Survey of optical indoor positioning systems. In: 2011 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–7. IEEE, Zürich (2011)

    Google Scholar 

  28. Barone, S., Paoli, A., Razionale, A.V.: Shape measurement by a multi-view methodology based on the remote tracking of a 3D optical scanner. Opt. Lasers Eng. 50(3), 380–390 (2012)

    Article  Google Scholar 

  29. UNIVERSAL ROBOTS UR10/CB3 Original instructions

    Google Scholar 

  30. CloudCompare (version 2.7) [GPL software] (2016). http://www.cloudcompare.org

Download references

Acknowledgement

We want to express our sincere gratitude for the funding by the European Regional Development Fund (INNO 02-08/EDV. Nr. 2.1.6_0208_E) and the Regierender Bürgermeister von Berlin, Senatskanzlei, and the HTW Berlin University of Applied Sciences.

Furthermore we would like to thank Daniel Girardeau-Montaut (Cloudcompare) for his great contribution to the 3D-community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arie Kai-Browne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kai-Browne, A. et al. (2016). 3D Acquisition, Processing and Visualization of Archaeological Artifacts. In: Ioannides, M., et al. Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. EuroMed 2016. Lecture Notes in Computer Science(), vol 10058. Springer, Cham. https://doi.org/10.1007/978-3-319-48496-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48496-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48495-2

  • Online ISBN: 978-3-319-48496-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics