Skip to main content

Molecular Targets for Therapy

  • Chapter
  • First Online:
Sepsis

Part of the book series: Respiratory Medicine ((RM))

  • 4803 Accesses

Abstract

Defining potential molecular targets for sepsis therapeutics has proven to be a real challenge in translating laboratory findings into effective clinical treatments. A myriad of possible targets have been proposed from preclinical studies but they often have overlapping pathologic functions, can differ depending upon the causative microbial pathogen, site of infection, and status of the immune response of the host at the time of treatment is initiated. When attempting to modulate the host response in critically ill patients during an ongoing systemic infection, the capacity to do harm is substantial and the net effects of such interventions on host defenses and antimicrobial clearance mechanisms in individual patients are highly variable. Finding a final common pathway that drives sepsis pathophysiology has been elusive and has limited progress in developing new sepsis therapeutics. Current aims to improve outcomes in sepsis are now focused upon regulation of the coagulation system; maintenance and repair of endothelial surfaces and the blood compartment; epithelial membrane integrity; regulating the dysfunctional systemic immune response in sepsis; and bolstering host defenses against microbial toxins and virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cinel I, Opal SM. Molecular biology of inflammation and sepsis: a primer. Crit Care Med. 2009;37(1):291–304. PubMed PMID: 19050640

    Article  CAS  PubMed  Google Scholar 

  2. van der Poll T, Opal SM. Host-pathogen interactions in sepsis. Lancet Infect Dis. 2008;8(1):32–43. PubMed PMID: 18063412

    Article  PubMed  Google Scholar 

  3. Warren BL, Eid A, Singer P, Pillay SS, Carl P, Novak I, et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA. 2001;286(15):1869–78. PubMed PMID: 11597289

    Article  CAS  PubMed  Google Scholar 

  4. Afshari A, Wetterslev J, Brok J, Moller AM. Antithrombin III for critically ill patients. Cochrane Database Syst Rev. 2008;3:CD005370.PubMed PMID: 18646125

    Google Scholar 

  5. Afshari A, Wetterslev J, Brok J, Moller A. Antithrombin III in critically ill patients: systematic review with meta-analysis and trial sequential analysis. BMJ. 2007;335(7632):1248–51. PubMed Central PMCID: 2137061

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wiedermann CJ, Kaneider NC. A systematic review of antithrombin concentrate use in patients with disseminated intravascular coagulation of severe sepsis. Blood Coagul Fibrinolysis. 2006;17(7):521–6. PubMed PMID: 16988545

    Article  CAS  PubMed  Google Scholar 

  7. Chu AJ. Tissue factor, blood coagulation, and beyond: an overview. Int J Inflamm. 2011;2011:367284. PubMed Central PMCID: 3176495

    Article  Google Scholar 

  8. Abraham E, Reinhart K, Svoboda P, Seibert A, Olthoff D, Dal Nogare A, et al. Assessment of the safety of recombinant tissue factor pathway inhibitor in patients with severe sepsis: a multicenter, randomized, placebo-controlled, single-blind, dose escalation study. Crit Care Med. 2001;29(11):2081–9. PubMed PMID: 11700399

    Article  CAS  PubMed  Google Scholar 

  9. Abraham E, Reinhart K, Opal S, Demeyer I, Doig C, Rodriguez AL, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA. 2003;290(2):238–47. PubMed PMID: 12851279

    Article  CAS  PubMed  Google Scholar 

  10. Taylor Jr FB, Chang A, Esmon CT, D'Angelo A, Vigano-D'Angelo S, Blick KE. Protein C prevents the coagulopathic and lethal effects of Escherichia coli infusion in the baboon. J Clin Invest. 1987;79(3):918–25. PubMed Central PMCID: 424237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li W, Zheng X, Gu J, Hunter J, Ferrell GL, Lupu F, et al. Overexpressing endothelial cell protein C receptor alters the hemostatic balance and protects mice from endotoxin. J Thromb Haemost. 2005;3(7):1351–9. PubMed PMID: 15978090

    Article  CAS  PubMed  Google Scholar 

  12. Murakami K, Okajima K, Uchiba M, Johno M, Nakagaki T, Okabe H, et al. Activated protein C attenuates endotoxin-induced pulmonary vascular injury by inhibiting activated leukocytes in rats. Blood. 1996;87(2):642–7. PubMed PMID: 8555486

    CAS  PubMed  Google Scholar 

  13. Marti-Carvajal AJ, Sola I, Lathyris D, Cardona AF. Human recombinant activated protein C for severe sepsis. Cochrane Database Syst Rev. 2012;3:CD004388.PubMed PMID: 22419295

    Google Scholar 

  14. Kalil AC, LaRosa SP. Effectiveness and safety of drotrecogin alfa (activated) for severe sepsis: a meta-analysis and metaregression. Lancet Infect Dis. 2012;12(9):678–86. PubMed PMID: 22809883

    Article  CAS  PubMed  Google Scholar 

  15. Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344(10):699–709. PubMed PMID: 11236773

    Article  CAS  PubMed  Google Scholar 

  16. Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366(22):2055–64. PubMed PMID: 22616830

    Article  CAS  PubMed  Google Scholar 

  17. Kalil AC, Florescu DF. Severe sepsis: are PROWESS and PROWESS-SHOCK trials comparable? A clinical and statistical heterogeneity analysis. Crit Care. 2013;17(4):167. PubMed Central PMCID: 3706817

    Article  PubMed  PubMed Central  Google Scholar 

  18. Saito H, Maruyama I, Shimazaki S, Yamamoto Y, Aikawa N, Ohno R, et al. Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial. J Thromb Haemost. 2007;5(1):31–41. PubMed PMID: 17059423

    Article  CAS  PubMed  Google Scholar 

  19. Vincent JL, Ramesh MK, Ernest D, LaRosa SP, Pachl J, Aikawa N, et al. A randomized, double-blind, placebo-controlled, Phase 2b study to evaluate the safety and efficacy of recombinant human soluble thrombomodulin, ART-123, in patients with sepsis and suspected disseminated intravascular coagulation. Crit Care Med. 2013;41(9):2069–79. PubMed PMID: 23979365

    Article  CAS  PubMed  Google Scholar 

  20. Jaimes F, De La Rosa G, Morales C, Fortich F, Arango C, Aguirre D, et al. Unfractioned heparin for treatment of sepsis: a randomized clinical trial (The HETRASE Study). Crit Care Med. 2009;37(4):1185–96. PubMed PMID: 19242322

    Article  CAS  PubMed  Google Scholar 

  21. Levi M, Levy M, Williams MD, Douglas I, Artigas A, Antonelli M, et al. Prophylactic heparin in patients with severe sepsis treated with drotrecogin alfa (activated). Am J Respir Crit Care Med. 2007;176(5):483–90. PubMed PMID: 17556722

    Article  CAS  PubMed  Google Scholar 

  22. Zarychanski R, Abou-Setta AM, Kanji S, Turgeon AF, Kumar A, Houston DS, et al. The efficacy and safety of heparin in patients with sepsis: a systematic review and metaanalysis. Crit Care Med. 2014; Dec 9. PubMed PMID: 25493972

    Google Scholar 

  23. Wildhagen K, García de Frutos P, Reutelingsperger C, Schrijver R, Areste C. Ortega-Gomez et al. Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis. Blood. 2014;123(7):1098–101. PubMed PMID: 24264231.

    Article  CAS  PubMed  Google Scholar 

  24. Brinkman V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. Pub Med PMID: 15001782.

    Article  Google Scholar 

  25. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13(4):463–9. Pub Med PMID: 17384648.

    Article  CAS  PubMed  Google Scholar 

  26. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15(11):1318–21. Pub Med PMID: 19855397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One. 2012;7(2):e32366. PubMed PMID: 22389696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003;101(10):3765–77. PubMed PMID: 12543869

    Article  CAS  PubMed  Google Scholar 

  29. Schouten M, Wiersinga WJ, Levi M, van der Poll T. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol. 2008;83(3):536–45. PubMed PMID: 19751574

    Article  CAS  PubMed  Google Scholar 

  30. Levi M, van der Poll T. Endothelial injury in sepsis. Intensive Care Med. 2013;39(10):1839–42. PubMed PMID: 23925547

    Article  PubMed  Google Scholar 

  31. Bockmeyer CL, Claus RA, Budde U, Kentouche K, Schneppenheim R, Losche W, et al. Inflammation-associated ADAMTS13 deficiency promotes formation of ultra-large von Willebrand factor. Haematologica. 2008;93(1):137–40. PubMed PMID: 18166799

    Article  CAS  PubMed  Google Scholar 

  32. de Stoppelaar SF, van 't Veer C, van der Poll T. The role of platelets in sepsis. Thromb Haemost. 2014;112(4):666–77. PubMed PMID: 24966015

    Article  PubMed  Google Scholar 

  33. Opal SM, van der Poll T. Endothelial barrier dysfunction in septic shock. J Intern Med. 2015;277(3):277–93. doi:10.1111/joim.12331. PubMed PMID: 25418337

    Article  CAS  PubMed  Google Scholar 

  34. Sevigny LM, Zhang P, Bohm A, Lazarides K, Perides G, Covic L, et al. Interdicting protease-activated receptor-2-driven inflammation with cell-penetrating pepducins. Proc Natl Acad Sci U S A. 2011;108(20):8491–6. PubMed PMID: 21536878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Covic L, Gresser AL, Talavera J, Swift S, Kuliopulos A. Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc Natl Acad Sci U S A. 2002;99(2):643–8. PubMed PMID: 11805322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaneider NC, Leger AJ, Agarwal A, Nguyen N, Perides G, Derian C, et al. ‘Role reversal’ for the receptor PAR1 in sepsis-induced vascular damage. Nat Immunol. 2007;8(12):1303–12. PubMed PMID: 179657:1303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee WL, Slutsky AS. Sepsis and endothelial permeability. N Engl J Med. 2010;363(7):689–91. PubMed PMID: 20818861

    Article  CAS  PubMed  Google Scholar 

  38. London NR, Zhu W, Bozza FA, Smith MC, Greif DM, Sorensen LK, et al. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med. 2010;2:23ra19. PubMed PMID: 20375003

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cohen J, Vincent J-L, Adhikari FR, Machado F, Angus D, Calandra T, et al. Sepsis: a roadmap for future research. Lancet Infect Dis. 2015;15:581–614.

    Article  PubMed  Google Scholar 

  40. Dominguez J, Samocha A, Liang Z, Burd EM, Farris AB, Coopersmith CM. Inhibition of IKKB in enterocytes exacerbates sepsis-induced intestinal injury and worsens mortality. Crit Care Med. 2013;41:e275–85. PubMed PMID: 23939348.

    Article  CAS  PubMed  Google Scholar 

  41. Deutchman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity. 2014;40:463–75. PubMed PMID: 24745331

    Article  Google Scholar 

  42. Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14. PubMed PMID: 22699609

    Article  Google Scholar 

  43. Pearce MM, Hilt EE, Rosenfeld AB, Zilliox JM, Thomas-White K, Fok C, et al. The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. mBio. 2014;5:1–12. PubMed PMID: 25006228.

    Article  Google Scholar 

  44. Blaser MJ. The microbiome revolution. J Clin Invest. 2014;124(10):4162–5. PubMed PMID: 25271724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fink M, Warren H. Strategies to improve drug development for sepsis. Nat Rev Drug Discov. 2014;10:1–18. PubMed PMID: 25190187

    Google Scholar 

  46. Nair V, Soraisham A. Probiotics and prebiotics: role in prevention of nosocomial sepsis in preterm infants. Int J Pediatr. 2013;2013:1–8. Article 874726, PubMed PMID: 23401695

    Article  Google Scholar 

  47. Weichert S, Schroten H, Adam R. The role of prebiotics and probiotics in prevention and treatment of childhood infectious diseases. Pediatr Infect Dis J. 2012;31(8):859–62. PubMed PMID: 22801095

    Article  PubMed  Google Scholar 

  48. Novak J, Katz J. Probiotics and prebiotics for gastrointestinal infections. Curr Infect Dis Rep. 2006;8(2):103–9. PubMed PMID: 16524546

    Article  PubMed  Google Scholar 

  49. Strunk T, Koilmann T, Patola S. Probiotics to prevent early-life infection. Lancet Infect Dis. 2015;15:378–9. PubMed PMID: 25942569

    Article  PubMed  Google Scholar 

  50. Besselink MG, van Santvoort HC, Renooij W, de Smet MB, Fischer K, Timmerman HM, et al. Intestinal barrier dysfunction in a randomized trial of a specific probiotic composition in acute pancreatitis. Ann Surg. 2009;250:712–9. PubMed PMID: 19801929.

    Article  PubMed  Google Scholar 

  51. Zaborin A, Defazio J, Kade M, Deatherage Kaiser BL, Belogortseva N, Camp II DG, et al. Phosphatecontaining Polyethylene glycol polymers prevent lethal sepsis by multidrug-resistant pathogens. Antimicrob Agents Chemother. 2014;58:966–77. PubMed PMID: 24277029.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Buffie C, Bucci V, Stein R, McKenney P, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores tile acid mediated resistance to Clostridium difficile. Nature. 2014. doi:10.1038/nature13828. PubMed PMID: 25337874.

    PubMed  PubMed Central  Google Scholar 

  53. Egea L, McAllister C, Lakhdari O, Minev I, Shenouda S, Kagnoff MF, et al. GM-CSF produced by non-hematopoietic cells in required for early epithelial cell proliferation and repair of injured colonic mucosa. J Immunol. 2013;190(4):1702–13. PubMed PMID: 233258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu Y. Hepatocyte growth factor promotes renal epithelial cell survival by dual mechanisms. Am J Physiol. 1999;277(4 Pt 2):F624–33. PubMed PMID: 10516287

    CAS  PubMed  Google Scholar 

  55. Opal SM, Keith JC, Jhung J, Parejo N, Marchese E, Maganti V, et al. Orally administered recombinant human interleukin-11 is protective in experimental neutropenic sepsis. J Infect Dis. 2003;187:70–6. PubMed PMID: 12508148.

    Article  CAS  PubMed  Google Scholar 

  56. Xu MJ, Feng D, Wang H, Guan Y, Yan X, Gao B, et al. IL-22 ameliorates renal ischemia-reperfusion injury by targeting proximal tubule epithelium. J Am Soc Nephrol. 2014;25:967–77. PubMed: 24459233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hunninghake GW, Doerschug KC, Nymon AB, Schmidt GA, Meyerholz DK, Ashare A, et al. Insulin-like growth factor-1 levels contribute to the development of bacterial translocation in sepsis. Am J Respir Crit Care Med. 2010;182:517–25. PubMed PMID: 20413631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kolodziej L, Lodolce J, Chang J, Schneider J, Grimm W, Bartulis S, et al. TNFAIP3 maintains intestinal barrier function and supports epithelial cell tight junctions. PLoS One. 2011;6:1–11. PubMed PMID: 22031828.

    Article  Google Scholar 

  59. Yang R, Harada T, Mollen KP, Prince JM, Levy RM, Englert JA, et al. Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol Med. 2006;12:105–14. PubMed PMID: 16953558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Qin S, Wang H, Yuan R, Li H, Ochani M, Ochani K, et al. Role of HMGV1 in apoptosis-mediated sepsis lethality. J Exp Med. 2006;203:1637–42. PubMed PMID: 16818669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li J, Kokkola R, Tabibzadeh S, Yang R, Ochani M, Qiang X, et al. Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol Med. 2003;9:37–45. PubMed PMID: 12765338.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fiuza C, Bustin M, Talwar S, Tropea M, Gertenberger E, Shelhamer JH, et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood. 2003;101:2652–60. PubMed PMID: 14684474

    Article  CAS  PubMed  Google Scholar 

  63. Wolfson RK, Chiang ET, Garcia JGN. HMGB1 induces human lung endothelial cell cytoskeletal rearrangement and barrier disruption. Microvasc Res. 2011;81(2):189–97. PubMed PMID: 21146549

    Article  CAS  PubMed  Google Scholar 

  64. Huang W, Liu Y, Li L, Zhang R, Liu W, Wu J, et al. HMGB1 increases permeability of the endothelial cell monolayer via RAGE and Src family tyrosine kinases. Inflammation. 2012;35(1):350–62. PubMed PMID: 21494799

    Article  CAS  PubMed  Google Scholar 

  65. Chavan SS, Huerta PT, Robbiati S, Valdes-Ferrer SI, Ochani M, Dancho M, et al. HMGB1 Mediates cognitive impairment in sepsis survivors. Mol Med. 2012;18:930–7. PubMed PMID: 22634723.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Jeong SJ, Lim BJ, Park S, Choi D, Kim HW, Ku NS, et al. The effect of sRAGE-Fc fusion protein attenuates inflammation and decreases mortality in a murine cecal ligation and puncture model. Inflamm Res. 2012;61:1211–8. PubMed PMID: 22777145.

    Article  CAS  PubMed  Google Scholar 

  67. DiNubile M. Adjunctive treatment of severe sepsis. Lancet Infect Dis. 2013;13:917–8. PubMed PMID: 24156894

    Article  PubMed  Google Scholar 

  68. Cruz DN, Perazella MA, Bellomo R, de Cal M, Polanco N, Corradi V, et al. Effectiveness of polymyxin B-immobilized fiber column in sepsis: a systematic review. Crit Care. 2007;11(2):R47. PubMed PMID: 17448226.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Basu R, Pathak S, Goyal J, Chaudhry R, Goel R, et al. Use of a novel hemoadsorption device for cytokine removal as adjuvant therapy in a patient with septic shock with multi-organ dysfunction: a case study. Indian J Crit Care Med. 2014;18(12):822–4. PubMed PMID: 25538418

    Article  PubMed  PubMed Central  Google Scholar 

  70. Honore P, Jacobs R, Joannes-Boyau O, De Regt J, De Waele E. Newly designed CRRT membranes for sepsis and SIRS—a pragmatic approach for bedside intensivists summarizing the more recent advances: a systematic structured review. ASAIO J. 2013;59(2):99–106. PubMed PMID: 23438770

    Article  CAS  PubMed  Google Scholar 

  71. Kang JH, Super M, Yung DW, Cooper RM, Domansky K. An extracorporeal blood-cleansing device for sepsis therapy. Nat Med. 2014;20(10):1211–6. PubMed PMID: 25216635

    Article  CAS  PubMed  Google Scholar 

  72. McCrea K, Wart R, LaRosa S. Removal of Carbapenem-Resistant Enterobacteriaceae (CRE) from blood by heparin-functional hemoperfusion media. PLoS One. 2014;9(12):e114242.

    Google Scholar 

  73. Delano FA, Hoyt DB, Schmid-Schonbein GW. Pancreatic digestive enzyme blockade in the intestine increases survival after experimental shock. Sci Transl Med. 2013;5:169ra11. PubMed PMID: 23345609

    Article  PubMed  PubMed Central  Google Scholar 

  74. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–23. PubMed PMID: 1133657

    Article  CAS  PubMed  Google Scholar 

  75. Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014;5:66–72. PubMed PMID: 24185508

    Article  PubMed  Google Scholar 

  76. Maldonado A, Gerriets V, Rathmell J. Matched and mismatched metabolic fuels in lymphocyte function. Semin Immunol. 2012;24:405–13. PubMed PMID: 23290889

    Article  Google Scholar 

  77. McGettrick A, O’Neill A. How metabolism generates signals during innate immunity and inflammation. J Biol Chem. 2013;288:22893–8. PubMed PMID: 23798679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Artenstein A, Opal SM. Proprotein convertases in health and disease. N Engl J Med. 2011;365:2507–18. PubMed PMID: 22204726

    Article  CAS  PubMed  Google Scholar 

  79. Walley KR, Thain KR, Russell JA, Reilly MP, Meyer NJ, Ferguson JF, et al. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med. 2014;6:1–10. PubMed PMID: 25320235.

    Article  Google Scholar 

  80. Spite M, Norling LV, Summers L, Yang R, Cooper D, Petasis NA, et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature. 2009;461:1287–91. PubMed PMID: 19865173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hotchkiss R, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13:862–74. PubMed PMID: 24232462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hotchkiss RS, Opal SM. Immunotherapy for sepsis: a new approach against an ancient foe. N Engl J Med. 2010;363(1):87–9. PubMed PMID: 20592301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kalil AC, Florescu DR. Prevalence and mortality associated with cytomegalovirus infection in nonimmunosuppressed patients in the intensive care unit. Crit Care Med. 2009;37(8):2350–8. PubMed PMID: 18531944

    Article  PubMed  Google Scholar 

  84. Walton AH, Muenzer JT, Rasche D, Boomer JS, Sato B, Brownstein BH, et al. Reactivation of multiple viruses in patients with sepsis. PLoS One. 2014;9(6):e98819.PubMed PMID: 24919177

    Article  PubMed  PubMed Central  Google Scholar 

  85. DeVlaminck I, Khush K, Strehl C, Kohli B, Luikart H, Neff NF, et al. Temporal response of the human virome to immunosuppression and antiviral therapy. Cell. 2013;155:1178–87. PubMed PMID: 24267896.

    Article  CAS  Google Scholar 

  86. Wu J, Zhou L, Liu J, Ma G, Kou Q, He Z, et al. The efficacy of thymosin alpha 1 for severe sepsis (ETASS): a multicenter, single-blind, randomized and controlled trial. Crit Care. 2013;17(1):R8. PubMed PMID: 23327199.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Unsinger J, Burnham CA, McDonough J, Morre M, Prakash PS, Caldwell CC, et al. Interleukin 7 ameliorates immune dysfunction and improves survival in a two hit model of fungal sepsis. J Infect Dis. 2012;206(4):606–16. PubMed PMID: 22693226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Inoue S, Unsinger J, Davis CG, Muenzer JT, Ferguson TA, Chang K, et al. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis. J Immunol. 2010;184:1401–9. PubMed PMID: 20026737.

    Article  CAS  PubMed  Google Scholar 

  89. Walter J, Ware L, Matthay M. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet. 2014;2:1016–26. PubMed PMID: 25465643

    CAS  PubMed  Google Scholar 

  90. Chahin A, Opal S, Zorzopulos J, Jobes D, Migdady Y, et al. The noval immunotherapeutic oligodeoxynucleotide IMT504 protects neutropenic animals from fatal Pseudomonas aeruginosa bacteremia and sepsis. Antimicrob Agents Chemother. 2015;59(2):1225–9. PubMed PMID: 25512413.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Elias F, Flo J, Lopez RA, Zorzopulos J, Montaner A, Rodriguez JM, et al. Strong cytosine quanosine-independent immunostimulation in humans and other primates by synthetic oligodeoxynucleotides with PyNTTTTGT motifs. J Immunol. 2003;171(7):3697–704. PubMed PMID: 14500668.

    Article  CAS  PubMed  Google Scholar 

  92. Cavaillon J-M, Eisen D, Annane D. Is boosting the immune system in sepsis appropriate? Crit Care Med. 2014;18:216. PubMed PMID: 24886820

    Google Scholar 

  93. Osuuchowski M, Connett J, Welch K, Granger J, Remick D, et al. Stratification is the key: inflammatory biomarkers accurately direct immunomodulatory therapy in experimental sepsis. Crit Care Med. 2009;37:1576–72. PubMed PMID: 24238100.

    Article  Google Scholar 

  94. Ramachandran G, Kaempfer R, Chung CS, Shirvan A, Chahin AB, Palardy J, et al. CD 28 homodimer interface mimetic peptide as a novel inhibitor in experimental models of gram negative sepsis. J Infect Dis. 2014. PubMed PMID: 25305323.

    Google Scholar 

  95. Ramachandran G, Tulapurkar ME, Harris KM, Arad G, Shivran A, Shemesh R, et al. A peptide antagonist of CD 28 signaling attenuates toxic shock and necrotizing soft tissue infection induced by Streptococcus pyogenes. J Infect Dis. 2013;206(12):1869–77. PubMed PMID: 23493729

    Article  Google Scholar 

  96. Bulger EM, Maier RV, Sperry J, Joshi M, Henry S, Moore FA, et al. A novel drug for treatment of necrotizing soft tissue infections: results of a phase 2a randomized controlled trial of AB103, a CD28 co-stimulatory receptor modulator. JAMA Surg. 2014. doi:10.1001/jamasurg.2013.4841. PubMed PMID:24740134.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre C. Kalil MD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kalil, A.C., Opal, S.M. (2017). Molecular Targets for Therapy. In: Ward, N., Levy, M. (eds) Sepsis. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-48470-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48470-9_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-48468-6

  • Online ISBN: 978-3-319-48470-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics