Advertisement

Sepsis pp 159-183 | Cite as

Organ Dysfunction in Sepsis: Brain, Neuromuscular, Cardiovascular, and Gastrointestinal

  • Brian J. Anderson
  • Mark E. MikkelsenEmail author
Chapter
  • 3k Downloads
Part of the Respiratory Medicine book series (RM)

Abstract

Sepsis-related organ dysfunction is common, complex, and associated with significant morbidity and mortality. Organ failure manifests in myriad ways in sepsis, mediated by a complex interplay between inflammation and endothelial and coagulation dysfunction incited by the infectious insult. Given the prevalence and life-support strategies frequently required to address sepsis-related respiratory and renal failure, respiratory failure and acute kidney injury are covered in separate chapters. In this chapter, we detail non-pulmonary, non-renal sepsis-associated organ dysfunction. We begin by examining neurologic complications of sepsis, followed by examination of cardiovascular and gastrointestinal organ dysfunction.

Keywords

Organ dysfunction Sepsis Neurologic dysfunction Coma Delirium Cardiovascular dysfunction Hepatobiliary dysfunction 

References

  1. 1.
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Intensive Care Med. 2003;29(4):530–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferreira FL, Bota DP, Bross A, Melot C, Vincent JL. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA. 2001;286(14):1754–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, Sibbald WJ. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med. 1995;23(10):1638–52.PubMedCrossRefGoogle Scholar
  4. 4.
    Eidelman LA, Putterman D, Putterman C, Sprung CL. The spectrum of septic encephalopathy. definitions, etiologies, and mortalities. JAMA. 1996;275(6):470–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Sprung CL, Peduzzi PN, Shatney CH, Schein RM, Wilson MF, Sheagren JN, et al. Impact of encephalopathy on mortality in the sepsis syndrome. the veterans administration systemic sepsis cooperative study group. Crit Care Med. 1990;18(8):801–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Pine RW, Wertz MJ, Lennard ES, Dellinger EP, Carrico CJ, Minshew BH. Determinants of organ malfunction or death in patients with intra-abdominal sepsis. A discriminant analysis. Arch Surg. 1983;118(2):242–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang L, Wang X, Ai Y, Guo Q, Huang L, Liu Z, et al. Epidemiological features and risk factors of sepsis-associated encephalopathy in intensive care unit patients: 2008–2011. Chin Med J (English Edn). 2012;125(5):828–31.Google Scholar
  8. 8.
    Ledingham IM, McArdle CS. Prospective study of the treatment of septic shock. Lancet. 1978;1(8075):1194–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Tran DD, Groeneveld AB, van der Meulen J, Nauta JJ, Strack van Schijndel RJ, Thijs LG. Age, chronic disease, sepsis, organ system failure, and mortality in a medical intensive care unit. Crit Care Med. 1990;18(5):474–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Ely EW, Truman B, Shintani A, Thomason JW, Wheeler AP, Gordon S, et al. Monitoring sedation status over time in ICU patients: reliability and validity of the richmond agitation-sedation scale (RASS). JAMA. 2003;289(22):2983–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Khan BA, Guzman O, Campbell NL, Walroth T, Tricker J, Hui SL, et al. Comparison and agreement between the richmond agitation-sedation scale and the riker sedation-agitation scale in evaluating patients' eligibility for delirium assessment in the ICU. Chest. 2012;142(1):48–54.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Brummel NE, Jackson JC, Pandharipande PP, Thompson JL, Shintani AK, Dittus RS, et al. Delirium in the ICU and subsequent long-term disability among survivors of mechanical ventilation. Crit Care Med. 42(2):369–77.Google Scholar
  13. 13.
    Ely EW, Shintani A, Truman B, Speroff T, Gordon SM, Harrell Jr FE, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2004;291(14):1753–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, et al. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369(14):1306–16.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Needham DM, Dinglas VD, Morris PE, Jackson JC, Hough CL, Mendez-Tellez PA, et al. Physical and cognitive performance of patients with acute lung injury 1 year after initial trophic versus full enteral feeding. EDEN trial follow-up. Am J Respir Crit Care Med. 2013;188(5):567–76.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    McNicoll L, Pisani MA, Zhang Y, Ely EW, Siegel MD, Inouye SK. Delirium in the intensive care unit: occurrence and clinical course in older patients. J Am Geriatr Soc. 2003;51(5):591–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Girard TD, Jackson JC, Pandharipande PP, Pun BT, Thompson JL, Shintani AK, et al. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit Care Med. 2010;38(7):1513–20.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    van den Boogaard M, Schoonhoven L, Evers AW, van der Hoeven JG, van Achterberg T, Pickkers P. Delirium in critically ill patients: impact on long-term health-related quality of life and cognitive functioning. Crit Care Med. 2012;40(1):112–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Thomason JW, Shintani A, Peterson JF, Pun BT, Jackson JC, Ely EW. Intensive care unit delirium is an independent predictor of longer hospital stay: a prospective analysis of 261 non-ventilated patients. Crit Care. 2005;9(4):R375–81.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lin SM, Liu CY, Wang CH, Lin HC, Huang CD, Huang PY, et al. The impact of delirium on the survival of mechanically ventilated patients. Crit Care Med. 2004;32(11):2254–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Patel SB, Poston JT, Pohlman A, Hall JB, Kress JP. Rapidly reversible, sedation-related delirium versus persistent delirium in the intensive care unit. Am J Respir Crit Care Med. 2014;189(6):658–65.PubMedCrossRefGoogle Scholar
  22. 22.
    Pisani MA, Kong SY, Kasl SV, Murphy TE, Araujo KL, Van Ness PH. Days of delirium are associated with 1-year mortality in an older intensive care unit population. Am J Respir Crit Care Med. 2009;180(11):1092–7.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA. 2007;298(22):2644–53.PubMedCrossRefGoogle Scholar
  24. 24.
    Salluh JI, Soares M, Teles JM, Ceraso D, Raimondi N, Nava VS, et al. Delirium epidemiology in critical care (DECCA): an international study. Crit Care. 2010;14(6):R210.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    van Eijk MM, Roes KC, Honing ML, Kuiper MA, Karakus A, van der Jagt M, et al. Effect of rivastigmine as an adjunct to usual care with haloperidol on duration of delirium and mortality in critically ill patients: a multicentre, double-blind, placebo-controlled randomised trial. Lancet. 2010;376(9755):1829–37.PubMedCrossRefGoogle Scholar
  26. 26.
    Girard TD, Pandharipande PP, Carson SS, Schmidt GA, Wright PE, Canonico AE, et al. Feasibility, efficacy, and safety of antipsychotics for intensive care unit delirium: the MIND randomized, placebo-controlled trial. Crit Care Med. 2010;38(2):428–37.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373(9678):1874–82.PubMedCrossRefGoogle Scholar
  28. 28.
    Ruokonen E, Parviainen I, Jakob SM, Nunes S, Kaukonen M, Shepherd ST, et al. "Dexmedetomidine for Continuous Sedation" Investigators. Dexmedetomidine versus propofol/midazolam for long-term sedation during mechanical ventilation. Intensive Care Med. 2009;35(2):282–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Riker RR, Shehabi Y, Bokesch PM, Ceraso D, Wisemandle W, Koura F, et al. SEDCOM (safety and efficacy of dexmedetomidine compared with midazolam) study group. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301(5):489–99.PubMedCrossRefGoogle Scholar
  30. 30.
    Girard TD, Kress JP, Fuchs BD, Thomason JW, Schweickert WD, Pun BT, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (awakening and breathing controlled trial): a randomised controlled trial. Lancet. 2008;371(9607):126–34.PubMedCrossRefGoogle Scholar
  31. 31.
    Dale CR, Kannas DA, Fan VS, Daniel SL, Deem S, Yanez III ND, et al. Improved analgesia, sedation, and delirium protocol associated with decreased duration of delirium and mechanical ventilation. Ann Am Thorac Soc. 2014;11(3):367–74.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Page VJ, Davis D, Zhao XB, Norton S, Casarin A, Brown T, et al. Statin use and risk of delirium in the critically ill. Am J Respir Crit Care Med. 2014;189(6):666–73.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Agarwal V, O'Neill PJ, Cotton BA, Pun BT, Haney S, Thompson J, et al. Prevalence and risk factors for development of delirium in burn intensive care unit patients. J Burn Care Res. 2010;31(5):706–15.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lat I, McMillian W, Taylor S, Janzen JM, Papadopoulos S, Korth L, et al. The impact of delirium on clinical outcomes in mechanically ventilated surgical and trauma patients. Crit Care Med. 2009;37(6):1898–905.PubMedCrossRefGoogle Scholar
  35. 35.
    Pandharipande P, Cotton BA, Shintani A, Thompson J, Pun BT, Morris Jr JA, et al. Prevalence and risk factors for development of delirium in surgical and trauma intensive care unit patients. J Trauma Injury Infect Crit Care. 2008;65(1):34–41.CrossRefGoogle Scholar
  36. 36.
    Ely EW, Girard TD, Shintani AK, Jackson JC, Gordon SM, Thomason JW, et al. Apolipoprotein E4 polymorphism as a genetic predisposition to delirium in critically ill patients. Crit Care Med. 2007;35(1):112–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Shehabi Y, Bellomo R, Reade MC, Bailey M, Bass F, Howe B, et al. Sedation Practice in Intensive Care Evaluation (SPICE) Study Investigators. ANZICS Clinical Trials Group. Early intensive care sedation predicts long-term mortality in ventilated critically ill patients. Am J Respir Crit Care Med. 2012;186(8):724–31.PubMedCrossRefGoogle Scholar
  38. 38.
    Skrobik Y, Leger C, Cossette M, Michaud V, Turgeon J. Factors predisposing to coma and delirium: fentanyl and midazolam exposure; CYP3A5, ABCB1, and ABCG2 genetic polymorphisms; and inflammatory factors. Crit Care Med. 2013;41(4):999–1008.PubMedCrossRefGoogle Scholar
  39. 39.
    Shehabi Y, Riker RR, Bokesch PM, Wisemandle W, Shintani A, Ely EW. SEDCOM (Safety and Efficacy of Dexmedetomidine Compared With Midazolam) Study Group. Delirium duration and mortality in lightly sedated, mechanically ventilated intensive care patients. Crit Care Med. 2010;38(12):2311–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Pandharipande P, Shintani A, Peterson J, Pun BT, Wilkinson GR, Dittus RS, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104(1):21–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Pisani MA, Murphy TE, Araujo KL, Slattum P, Van Ness PH, Inouye SK. Benzodiazepine and opioid use and the duration of intensive care unit delirium in an older population. Crit Care Med. 2009;37(1):177–83.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Morandi A, Hughes CG, Thompson JL, Pandharipande PP, Shintani AK, Vasilevskis EE, et al. Statins and delirium during critical illness: a multicenter, prospective cohort study*. Crit Care Med. 2014;42(8):1899–909.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, et al. Evaluation of delirium in critically ill patients: validation of the confusion assessment method for the intensive care unit (CAM-ICU). Crit Care Med. 2001;29(7):1370–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Ely EW, Inouye SK, Bernard GR, Gordon S, Francis J, May L, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA. 2001;286(21):2703–10.PubMedCrossRefGoogle Scholar
  45. 45.
    Dubois MJ, Bergeron N, Dumont M, Dial S, Skrobik Y. Delirium in an intensive care unit: a study of risk factors. Intensive Care Med. 2001;27(8):1297–304.PubMedCrossRefGoogle Scholar
  46. 46.
    Ouimet S, Kavanagh BP, Gottfried SB, Skrobik Y. Incidence, risk factors and consequences of ICU delirium. Intensive Care Med. 2007;33(1):66–73.PubMedCrossRefGoogle Scholar
  47. 47.
    Mehta S, Burry L, Cook D, Fergusson D, Steinberg M, Granton J, et al. Daily sedation interruption in mechanically ventilated critically ill patients cared for with a sedation protocol: a randomized controlled trial. JAMA. 2012;308(19):1985–92.PubMedCrossRefGoogle Scholar
  48. 48.
    Devlin JW, Roberts RJ, Fong JJ, Skrobik Y, Riker RR, Hill NS, et al. Efficacy and safety of quetiapine in critically ill patients with delirium: a prospective, multicenter, randomized, double-blind, placebo-controlled pilot study. Crit Care Med. 2010;38(2):419–27.PubMedCrossRefGoogle Scholar
  49. 49.
    Reade MC, O'Sullivan K, Bates S, Goldsmith D, Ainslie WR, Bellomo R. Dexmedetomidine vs. haloperidol in delirious, agitated, intubated patients: a randomised open-label trial. Crit Care. 2009;13(3):R75.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Van Rompaey B, Elseviers MM, Schuurmans MJ, Shortridge-Baggett LM, Truijen S, Bossaert L. Risk factors for delirium in intensive care patients: a prospective cohort study. Crit Care. 2009;13(3):R77.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kishi Y, Iwasaki Y, Takezawa K, Kurosawa H, Endo S. Delirium in critical care unit patients admitted through an emergency room. Gen Hosp Psychiatry. 1995;17(5):371–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Ely EW, Gautam S, Margolin R, Francis J, May L, Speroff T, et al. The impact of delirium in the intensive care unit on hospital length of stay. Intensive Care Med. 2001;27(12):1892–900.PubMedCrossRefGoogle Scholar
  53. 53.
    Inouye SK, Kosar CM, Tommet D, Schmitt EM, Puelle MR, Saczynski JS, et al. The CAM-S: development and validation of a new scoring system for delirium severity in 2 cohorts. Ann Intern Med. 2014;160(8):526–33.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Polito A, Eischwald F, Maho AL, Polito A, Azabou E, Annane D, et al. Pattern of brain injury in the acute setting of human septic shock. Crit Care. 2013;17(5):R204.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sharshar T, Annane D, de la Grandmaison GL, Brouland JP, Hopkinson NS, Francoise G. The neuropathology of septic shock. Brain Pathol. 2004;14(1):21–33.PubMedCrossRefGoogle Scholar
  56. 56.
    Sharshar T, Hopkinson NS, Orlikowski D, Annane D. Science review: the brain in sepsis—culprit and victim. Crit Care. 2005;9(1):37–44.PubMedCrossRefGoogle Scholar
  57. 57.
    Sonneville R, Verdonk F, Rauturier C, Klein IF, Wolff M, Annane D, et al. Understanding brain dysfunction in sepsis. Ann Intensive Care. 2013;3(1):15.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Inouye SK. Prevention of delirium in hospitalized older patients: risk factors and targeted intervention strategies. Ann Med. 2000;32(4):257–63.PubMedCrossRefGoogle Scholar
  59. 59.
    Bryson GL, Wyand A, Wozny D, Rees L, Taljaard M, Nathan H. A prospective cohort study evaluating associations among delirium, postoperative cognitive dysfunction, and apolipoprotein E genotype following open aortic repair. Can J Anaesth. 2011;58(3):246–55.PubMedCrossRefGoogle Scholar
  60. 60.
    van Munster BC, Korevaar JC, Zwinderman AH, Leeflang MM, de Rooij SE. The association between delirium and the apolipoprotein E epsilon 4 allele: new study results and a meta-analysis. Am J Geriatr Psychiatry. 2009;17(10):856–62.PubMedCrossRefGoogle Scholar
  61. 61.
    van Munster BC, Korevaar JC, de Rooij SE, Levi M, Zwinderman AH. The association between delirium and the apolipoprotein E epsilon4 allele in the elderly. Psychiatr Genet. 2007;17(5):261–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Leung JM, Sands LP, Wang Y, Poon A, Kwok PY, Kane JP, et al. Apolipoprotein E e4 allele increases the risk of early postoperative delirium in older patients undergoing noncardiac surgery. Anesthesiology. 2007;107(3):406–11.PubMedCrossRefGoogle Scholar
  63. 63.
    Adamis D, Treloar A, Martin FC, Gregson N, Hamilton G, Macdonald AJ. APOE and cytokines as biological markers for recovery of prevalent delirium in elderly medical inpatients. Int J Geriatr Psychiatry. 2007;22(7):688–94.PubMedCrossRefGoogle Scholar
  64. 64.
    Tagarakis GI, Tsolaki-Tagaraki F, Tsolaki M, Diegeler A, Tsilimingas NB, Papassotiropoulos A. The role of apolipoprotein E in cognitive decline and delirium after bypass heart operations. Am J Alzheimer Dis Other Dement. 2007;22(3):223–8.CrossRefGoogle Scholar
  65. 65.
    Katznelson R, Djaiani GN, Borger MA, Friedman Z, Abbey SE, Fedorko L, et al. Preoperative use of statins is associated with reduced early delirium rates after cardiac surgery. Anesthesiology. 2009;110(1):67–73.PubMedCrossRefGoogle Scholar
  66. 66.
    Katznelson R, Djaiani G, Mitsakakis N, Lindsay TF, Tait G, Friedman Z, et al. Delirium following vascular surgery: increased incidence with preoperative beta-blocker administration. Can J Anaesth. 2009;56(11):793–801.PubMedCrossRefGoogle Scholar
  67. 67.
    Mariscalco G, Cottini M, Zanobini M, Salis S, Dominici C, Banach M, et al. Preoperative statin therapy is not associated with a decrease in the incidence of delirium after cardiac operations. Ann Thorac Surg. 2012;93(5):1439–47.PubMedCrossRefGoogle Scholar
  68. 68.
    Redelmeier DA, Thiruchelvam D, Daneman N. Delirium after elective surgery among elderly patients taking statins. CMAJ. 2008;179(7):645–52.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Hopkins RO, Weaver LK, Pope D, Orme JF, Bigler ED, Larson-LOHR V. Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;160(1):50–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Hopkins RO, Jackson JC. Long-term neurocognitive function after critical illness. Chest. 2006;130(3):869–78.PubMedCrossRefGoogle Scholar
  71. 71.
    Gunther ML, Morandi A, Krauskopf E, Pandharipande P, Girard TD, Jackson JC, et al. The association between brain volumes, delirium duration, and cognitive outcomes in intensive care unit survivors: the VISIONS cohort magnetic resonance imaging study*. Crit Care Med. 2012;40(7):2022–2032.Google Scholar
  72. 72.
    Morandi A, Rogers BP, Gunther ML, Merkle K, Pandharipande P, Girard TD, et al. The relationship between delirium duration, white matter integrity, and cognitive impairment in intensive care unit survivors as determined by diffusion tensor imaging: the VISIONS prospective cohort magnetic resonance imaging study*. Crit Care Med. 2012;40(7):2182–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kress JP, Pohlman AS, O'Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342(20):1471–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Hwang YJ, Dixon SN, Reiss JP, Wald R, Parikh CR, Gandhi S, et al. Atypical antipsychotic drugs and the risk for acute kidney injury and other adverse outcomes in older adults: a population-based cohort study. Ann Intern Med. 2014;161(4):242–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Gill SS, Bronskill SE, Normand SL, Anderson GM, Sykora K, Lam K, et al. Antipsychotic drug use and mortality in older adults with dementia. Ann Intern Med. 2007;146(11):775–86.PubMedCrossRefGoogle Scholar
  76. 76.
    Wang PS, Schneeweiss S, Avorn J, Fischer MA, Mogun H, Solomon DH, et al. Risk of death in elderly users of conventional vs. atypical antipsychotic medications. N Engl J Med. 2005;353(22):2335–41.PubMedCrossRefGoogle Scholar
  77. 77.
    Barr J, Fraser GL, Puntillo K, Ely EW, Gelinas C, Dasta JF, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41(1):263–306.PubMedCrossRefGoogle Scholar
  78. 78.
    Pandharipande PP, Sanders RD, Girard TD, McGrane S, Thompson JL, Shintani AK, et al. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial. Crit Care. 2010;14(2):R38.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hermans G, Van Mechelen H, Clerckx B, Vanhullebusch T, Mesotten D, Wilmer A, et al. Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis. Am J Respir Crit Care Med. 2014;190(4):410–20.PubMedCrossRefGoogle Scholar
  80. 80.
    Stevens RD, Marshall SA, Cornblath DR, Hoke A, Needham DM, de Jonghe B, et al. A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med. 2009;37(10 Suppl):S299–308.PubMedCrossRefGoogle Scholar
  81. 81.
    Medical Research Council. Aids to the examination of the peripheral nervous system, memorandum no. 45. London: Her Majesty's Stationery Office; 1981.Google Scholar
  82. 82.
    Hough CL, Lieu BK, Caldwell ES. Manual muscle strength testing of critically ill patients: feasibility and interobserver agreement. Crit Care. 2011;15(1):R43.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ali NA, O'Brien Jr JM, Hoffmann SP, Phillips G, Garland A, Finley JC, et al. Acquired weakness, handgrip strength, and mortality in critically ill patients. Am J Respir Crit Care Med. 2008;178(3):261–8.PubMedCrossRefGoogle Scholar
  84. 84.
    De Jonghe B, Sharshar T, Lefaucheur JP, Authier FJ, Durand-Zaleski I, Boussarsar M, et al. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002;288(22):2859–67.PubMedCrossRefGoogle Scholar
  85. 85.
    Fan E. Critical illness neuromyopathy and the role of physical therapy and rehabilitation in critically ill patients (discussion 944–6). Respir Care. 2012;57(6):933–44.PubMedCrossRefGoogle Scholar
  86. 86.
    Hermans G, Clerckx B, Vanhullebusch T, Segers J, Vanpee G, Robbeets C, et al. Interobserver agreement of medical research council sum-score and handgrip strength in the intensive care unit. Muscle Nerve. 2012;45(1):18–25.PubMedCrossRefGoogle Scholar
  87. 87.
    Mirzakhani H, Williams JN, Mello J, Joseph S, Meyer MJ, Waak K, et al. Muscle weakness predicts pharyngeal dysfunction and symptomatic aspiration in long-term ventilated patients. Anesthesiology. 2013;119(2):389–97.PubMedCrossRefGoogle Scholar
  88. 88.
    Fan E, Ciesla ND, Truong AD, Bhoopathi V, Zeger SL, Needham DM. Inter-rater reliability of manual muscle strength testing in ICU survivors and simulated patients. Intensive Care Med. 2010;36(6):1038–43.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wieske L, Chan Pin Yin DR, Verhamme C, Schultz MJ, van Schaik IN, Horn J. Autonomic dysfunction in ICU-acquired weakness: a prospective observational pilot study. Intensive Care Med. 2013;39(9):1610–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Vanpee G, Hermans G, Segers J, Gosselink R. Assessment of limb muscle strength in critically ill patients: a systematic review. Crit Care Med. 2014;42(3):701–11.PubMedCrossRefGoogle Scholar
  91. 91.
    Druschky A, Herkert M, Radespiel-Troger M, Druschky K, Hund E, Becker CM, et al. Critical illness polyneuropathy: clinical findings and cell culture assay of neurotoxicity assessed by a prospective study. Intensive Care Med. 2001;27(4):686–93.PubMedCrossRefGoogle Scholar
  92. 92.
    Berek K, Margreiter J, Willeit J, Berek A, Schmutzhard E, Mutz NJ. Polyneuropathies in critically ill patients: a prospective evaluation. Intensive Care Med. 1996;22(9):849–55.PubMedCrossRefGoogle Scholar
  93. 93.
    Vanpee G, Segers J, Van Mechelen H, Wouters P, Van den Berghe G, Hermans G, et al. The interobserver agreement of handheld dynamometry for muscle strength assessment in critically ill patients. Crit Care Med. 2011;39(8):1929–34.PubMedCrossRefGoogle Scholar
  94. 94.
    Baldwin CE, Paratz JD, Bersten AD. Muscle strength assessment in critically ill patients with handheld dynamometry: an investigation of reliability, minimal detectable change, and time to peak force generation. J Crit Care. 2013;28(1):77–86.PubMedCrossRefGoogle Scholar
  95. 95.
    Hund E, Genzwurker H, Bohrer H, Jakob H, Thiele R, Hacke W. Predominant involvement of motor fibres in patients with critical illness polyneuropathy. Br J Anaesth. 1997;78(3):274–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Khan J, Harrison TB, Rich MM, Moss M. Early development of critical illness myopathy and neuropathy in patients with severe sepsis. Neurology. 2006;67(8):1421–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Tepper M, Rakic S, Haas JA, Woittiez AJ. Incidence and onset of critical illness polyneuropathy in patients with septic shock. Neth J Med. 2000;56(6):211–4.PubMedCrossRefGoogle Scholar
  98. 98.
    Nanas S, Kritikos K, Angelopoulos E, Siafaka A, Tsikriki S, Poriazi M, et al. Predisposing factors for critical illness polyneuromyopathy in a multidisciplinary intensive care unit. Acta Neurol Scand. 2008;118(3):175–81.PubMedCrossRefGoogle Scholar
  99. 99.
    Bednarik J, Lukas Z, Vondracek P. Critical illness polyneuromyopathy: the electrophysiological components of a complex entity. Intensive Care Med. 2003;29(9):1505–14.PubMedCrossRefGoogle Scholar
  100. 100.
    Mohr M, Englisch L, Roth A, Burchardi H, Zielmann S. Effects of early treatment with immunoglobulin on critical illness polyneuropathy following multiple organ failure and gram-negative sepsis. Intensive Care Med. 1997;23(11):1144–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Bercker S, Weber-Carstens S, Deja M, Grimm C, Wolf S, Behse F, et al. Critical illness polyneuropathy and myopathy in patients with acute respiratory distress syndrome. Crit Care Med. 2005;33(4):711–5.PubMedCrossRefGoogle Scholar
  102. 102.
    de Letter MA, Schmitz PI, Visser LH, Verheul FA, Schellens RL, Op de Coul DA, et al. Risk factors for the development of polyneuropathy and myopathy in critically ill patients. Crit Care Med. 2001;29(12):2281–6.PubMedCrossRefGoogle Scholar
  103. 103.
    De Letter MA, van Doorn PA, Savelkoul HF, Laman JD, Schmitz PI, Op de Coul DA, et al. Critical illness polyneuropathy and myopathy (CIPNM): evidence for local immune activation by cytokine-expression in the muscle tissue. J Neuroimmunol. 2000;106(1–2):206–13.PubMedCrossRefGoogle Scholar
  104. 104.
    Coakley JH, Nagendran K, Yarwood GD, Honavar M, Hinds CJ. Patterns of neurophysiological abnormality in prolonged critical illness. Intensive Care Med. 1998;24(8):801–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Leijten FS, Harinck-de Weerd JE, Poortvliet DC, de Weerd AW. The role of polyneuropathy in motor convalescence after prolonged mechanical ventilation. JAMA. 1995;274(15):1221–5.PubMedCrossRefGoogle Scholar
  106. 106.
    Witt NJ, Zochodne DW, Bolton CF, Grand'Maison F, Wells G, Young GB, et al. Peripheral nerve function in sepsis and multiple organ failure. Chest. 1991;99(1):176–84.PubMedCrossRefGoogle Scholar
  107. 107.
    Thiele RI, Jakob H, Hund E, Tantzky S, Keller S, Kamler M, et al. Sepsis and catecholamine support are the major risk factors for critical illness polyneuropathy after open heart surgery. Thorac Cardiovasc Surg. 2000;48(3):145–50.PubMedCrossRefGoogle Scholar
  108. 108.
    Garnacho-Montero J, Madrazo-Osuna J, Garcia-Garmendia JL, Ortiz-Leyba C, Jimenez-Jimenez FJ, Barrero-Almodovar A, et al. Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients. Intensive Care Med. 2001;27(8):1288–96.PubMedCrossRefGoogle Scholar
  109. 109.
    Santos PD, Teixeira C, Savi A, Maccari JG, Neres FS, Machado AS, et al. The critical illness polyneuropathy in septic patients with prolonged weaning from mechanical ventilation: is the diaphragm also affected? A pilot study. Respir Care. 2012;57(10):1594–601.PubMedCrossRefGoogle Scholar
  110. 110.
    Steinberg KP, Hudson LD, Goodman RB, Hough CL, Lanken PN, Hyzy R, et al. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med. 2006;354(16):1671–84.PubMedCrossRefGoogle Scholar
  111. 111.
    de Jonghe B, Lacherade JC, Sharshar T, Outin H. Intensive care unit-acquired weakness: risk factors and prevention. Crit Care Med. 2009;37(10 Suppl):S309–15.PubMedCrossRefGoogle Scholar
  112. 112.
    De Jonghe B, Bastuji-Garin S, Sharshar T, Outin H, Brochard L. Does ICU-acquired paresis lengthen weaning from mechanical ventilation? Intensive Care Med. 2004;30(6):1117–21.PubMedCrossRefGoogle Scholar
  113. 113.
    Leijten FS, De Weerd AW, Poortvliet DC, De Ridder VA, Ulrich C, Harink-De Weerd JE. Critical illness polyneuropathy in multiple organ dysfunction syndrome and weaning from the ventilator. Intensive Care Med. 1996;22(9):856–61.PubMedCrossRefGoogle Scholar
  114. 114.
    Paratz J, Thomas P, Adsett J. Re-admission to intensive care: identification of risk factors. Physiother Res Int. 2005;10(3):154–63.PubMedCrossRefGoogle Scholar
  115. 115.
    Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Al-Saidi F, et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med. 2003;348(8):683–93.PubMedCrossRefGoogle Scholar
  116. 116.
    Cheung AM, Tansey CM, Tomlinson G, Diaz-Granados N, Matte A, Barr A, et al. Two-year outcomes, health care use, and costs of survivors of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;174(5):538–44.PubMedCrossRefGoogle Scholar
  117. 117.
    Dowdy DW, Eid MP, Sedrakyan A, Mendez-Tellez PA, Pronovost PJ, Herridge MS, et al. Quality of life in adult survivors of critical illness: a systematic review of the literature. Intensive Care Med. 2005;31(5):611–20.PubMedCrossRefGoogle Scholar
  118. 118.
    Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med. 2008;36(8):2238–43.PubMedCrossRefGoogle Scholar
  119. 119.
    Hermans G, Wilmer A, Meersseman W, Milants I, Wouters PJ, Bobbaers H, et al. Impact of intensive insulin therapy on neuromuscular complications and ventilator dependency in the medical intensive care unit. Am J Respir Crit Care Med. 2007;175(5):480–9.PubMedCrossRefGoogle Scholar
  120. 120.
    van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67.PubMedCrossRefGoogle Scholar
  121. 121.
    Van den Berghe G, Schoonheydt K, Becx P, Bruyninckx F, Wouters PJ. Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology. 2005;64(8):1348–53.PubMedCrossRefGoogle Scholar
  122. 122.
    NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY, Blair D, Foster D, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.CrossRefGoogle Scholar
  123. 123.
    NICE-SUGAR Study Investigators, Finfer S, Liu B, Chittock DR, Norton R, Myburgh JA, et al. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012;367(12):1108–18.CrossRefGoogle Scholar
  124. 124.
    Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39.PubMedCrossRefGoogle Scholar
  125. 125.
    Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228.PubMedCrossRefGoogle Scholar
  126. 126.
    Patel BK, Pohlman AS, Hall JB, Kress JP. Impact of early mobilization on glycemic control and ICU-acquired weakness in critically ill patients who are mechanically ventilated. Chest. 2014;146(3):583–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Rodriguez PO, Setten M, Maskin LP, Bonelli I, Vidomlansky SR, Attie S, et al. Muscle weakness in septic patients requiring mechanical ventilation: protective effect of transcutaneous neuromuscular electrical stimulation. J Crit Care. 2012;27(3):319.e1–8.CrossRefGoogle Scholar
  128. 128.
    Chao P, Shih C, Lee Y, Tseng C, Kuo S, Shih Y, et al. Association of post-discharge rehabilitation with mortality in intensive care unit survivors of sepsis. Am J Respir Crit Care Med. 2014;190(9):1003–11.PubMedCrossRefGoogle Scholar
  129. 129.
    Furian T, Aguiar C, Prado K, Ribeiro RV, Becker L, Martinelli N, et al. Ventricular dysfunction and dilation in severe sepsis and septic shock: relation to endothelial function and mortality. J Crit Care. 2012;27(3):319.e9–15.CrossRefGoogle Scholar
  130. 130.
    Sturgess DJ, Marwick TH, Joyce C, Jenkins C, Jones M, Masci P, et al. Prediction of hospital outcome in septic shock: a prospective comparison of tissue doppler and cardiac biomarkers. Crit Care. 2010;14(2):R44.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Charpentier J, Luyt CE, Fulla Y, Vinsonneau C, Cariou A, Grabar S, et al. Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis. Crit Care Med. 2004;32(3):660–5.PubMedCrossRefGoogle Scholar
  132. 132.
    Fernandes Jr CJ, Akamine N, Knobel E. Cardiac troponin: a new serum marker of myocardial injury in sepsis. Intensive Care Med. 1999;25(10):1165–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med. 2008;36(6):1701–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Jardin F, Brun-Ney D, Auvert B, Beauchet A, Bourdarias JP. Sepsis-related cardiogenic shock. Crit Care Med. 1990;18(10):1055–60.PubMedCrossRefGoogle Scholar
  135. 135.
    Ikonomidis I, Nikolaou M, Dimopoulou I, Paraskevaidis I, Lekakis J, Mavrou I, et al. Association of left ventricular diastolic dysfunction with elevated NT-pro-BNP in general intensive care unit patients with preserved ejection fraction: a complementary role of tissue doppler imaging parameters and NT-pro-BNP levels for adverse outcome. Shock. 2010;33(2):141–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Bouhemad B, Nicolas-Robin A, Arbelot C, Arthaud M, Feger F, Rouby JJ. Isolated and reversible impairment of ventricular relaxation in patients with septic shock. Crit Care Med. 2008;36(3):766–74.PubMedCrossRefGoogle Scholar
  137. 137.
    Mehta NJ, Khan IA, Gupta V, Jani K, Gowda RM, Smith PR. Cardiac troponin I predicts myocardial dysfunction and adverse outcome in septic shock. Int J Cardiol. 2004;95(1):13–7.PubMedCrossRefGoogle Scholar
  138. 138.
    ver Elst KM, Spapen HD, Nguyen DN, Garbar C, Huyghens LP, Gorus FK. Cardiac troponins I and T are biological markers of left ventricular dysfunction in septic shock. Clin Chem. 2000;46(5):650–7.Google Scholar
  139. 139.
    Jafri SM, Lavine S, Field BE, Bahorozian MT, Carlson RW. Left ventricular diastolic function in sepsis. Crit Care Med. 1990;18(7):709–14.PubMedCrossRefGoogle Scholar
  140. 140.
    Jardin F, Fourme T, Page B, Loubieres Y, Vieillard-Baron A, Beauchet A, et al. Persistent preload defect in severe sepsis despite fluid loading: a longitudinal echocardiographic study in patients with septic shock. Chest. 1999;116(5):1354–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Munt B, Jue J, Gin K, Fenwick J, Tweeddale M. Diastolic filling in human severe sepsis: an echocardiographic study. Crit Care Med. 1998;26(11):1829–33.PubMedCrossRefGoogle Scholar
  142. 142.
    Kimchi A, Ellrodt AG, Berman DS, Riedinger MS, Swan HJ, Murata GH. Right ventricular performance in septic shock: a combined radionuclide and hemodynamic study. J Am Coll Cardiol. 1984;4(5):945–51.PubMedCrossRefGoogle Scholar
  143. 143.
    Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, et al. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med. 1984;100(4):483–90.PubMedCrossRefGoogle Scholar
  144. 144.
    Schneider AJ, Teule GJ, Groeneveld AB, Nauta J, Heidendal GA, Thijs LG. Biventricular performance during volume loading in patients with early septic shock, with emphasis on the right ventricle: a combined hemodynamic and radionuclide study. Am Heart J. 1988;116(1 Pt 1):103–12.PubMedCrossRefGoogle Scholar
  145. 145.
    Parker MM, McCarthy KE, Ognibene FP, Parrillo JE. Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest. 1990;97(1):126–31.PubMedCrossRefGoogle Scholar
  146. 146.
    Parker MM, Ognibene FP, Parrillo JE. Peak systolic pressure/end-systolic volume ratio, a load-independent measure of ventricular function, is reversibly decreased in human septic shock. Crit Care Med. 1994;22(12):1955–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Ellrodt AG, Riedinger MS, Kimchi A, Berman DS, Maddahi J, Swan HJ, et al. Left ventricular performance in septic shock: reversible segmental and global abnormalities. Am Heart J. 1985;110(2):402–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Parker MM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med. 1987;15(10):923–9.PubMedCrossRefGoogle Scholar
  149. 149.
    Werdan K, Oelke A, Hettwer S, Nuding S, Bubel S, Hoke R, et al. Septic cardiomyopathy: hemodynamic quantification, occurrence, and prognostic implications. Clin Res Cardiol. 2011;100(8):661–8.PubMedCrossRefGoogle Scholar
  150. 150.
    Poelaert J, Declerck C, Vogelaers D, Colardyn F, Visser CA. Left ventricular systolic and diastolic function in septic shock. Intensive Care Med. 1997;23(5):553–60.PubMedCrossRefGoogle Scholar
  151. 151.
    Artucio H, Digenio A, Pereyra M. Left ventricular function during sepsis. Crit Care Med. 1989;17(4):323–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Wilhelm J, Hettwer S, Schuermann M, Bagger S, Gerhardt F, Mundt S, et al. Severity of cardiac impairment in the early stage of community-acquired sepsis determines worse prognosis. Clin Res Cardiol. 2013;102(10):735–44.PubMedCrossRefGoogle Scholar
  153. 153.
    Chua G, Kang-Hoe L. Marked elevations in N-terminal brain natriuretic peptide levels in septic shock. Crit Care. 2004;8(4):R248–50.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Ammann P, Fehr T, Minder EI, Gunter C, Bertel O. Elevation of troponin I in sepsis and septic shock. Intensive Care Med. 2001;27(6):965–9.PubMedCrossRefGoogle Scholar
  155. 155.
    Arlati S, Brenna S, Prencipe L, Marocchi A, Casella GP, Lanzani M, et al. Myocardial necrosis in ICU patients with acute non-cardiac disease: a prospective study. Intensive Care Med. 2000;26(1):31–7.PubMedCrossRefGoogle Scholar
  156. 156.
    Spies C, Haude V, Fitzner R, Schroder K, Overbeck M, Runkel N, et al. Serum cardiac troponin T as a prognostic marker in early sepsis. Chest. 1998;113(4):1055–63.PubMedCrossRefGoogle Scholar
  157. 157.
    Tiruvoipati R, Sultana N, Lewis D. Cardiac troponin I does not independently predict mortality in critically ill patients with severe sepsis. Emerg Med Australas. 2012;24(2):151–8.PubMedCrossRefGoogle Scholar
  158. 158.
    Turner A, Tsamitros M, Bellomo R. Myocardial cell injury in septic shock. Crit Care Med. 1999;27(9):1775–80.PubMedCrossRefGoogle Scholar
  159. 159.
    Post F, Weilemann LS, Messow CM, Sinning C, Munzel T. B-type natriuretic peptide as a marker for sepsis-induced myocardial depression in intensive care patients. Crit Care Med. 2008;36(11):3030–7.PubMedCrossRefGoogle Scholar
  160. 160.
    Witthaut R, Busch C, Fraunberger P, Walli A, Seidel D, Pilz G, et al. Plasma atrial natriuretic peptide and brain natriuretic peptide are increased in septic shock: impact of interleukin-6 and sepsis-associated left ventricular dysfunction. Intensive Care Med. 2003;29(10):1696–702.PubMedCrossRefGoogle Scholar
  161. 161.
    Varpula M, Pulkki K, Karlsson S, Ruokonen E, Pettila V, FINNSEPSIS Study Group. Predictive value of N-terminal pro-brain natriuretic peptide in severe sepsis and septic shock. Crit Care Med. 2007;35(5):1277–83.PubMedCrossRefGoogle Scholar
  162. 162.
    Annane D, Sebille V, Duboc D, Le Heuzey JY, Sadoul N, Bouvier E, et al. Incidence and prognosis of sustained arrhythmias in critically ill patients. Am J Respir Crit Care Med. 2008;178(1):20–5.PubMedCrossRefGoogle Scholar
  163. 163.
    Christian SA, Schorr C, Ferchau L, Jarbrink ME, Parrillo JE, Gerber DR. Clinical characteristics and outcomes of septic patients with new-onset atrial fibrillation. J Crit Care. 2008;23(4):532–6.PubMedCrossRefGoogle Scholar
  164. 164.
    Lee-Iannotti JK, Capampangan DJ, Hoffman-Snyder C, Wellik KE, Patel B, Tondato F, et al. New-onset atrial fibrillation in severe sepsis and risk of stroke and death: a critically appraised topic. Neurologist. 2012;18(4):239–43.PubMedCrossRefGoogle Scholar
  165. 165.
    Salman S, Bajwa A, Gajic O, Afessa B. Paroxysmal atrial fibrillation in critically ill patients with sepsis. J Intensive Care Med. 2008;23(3):178–83.PubMedCrossRefGoogle Scholar
  166. 166.
    Walkey AJ, Greiner MA, Heckbert SR, Jensen PN, Piccini JP, Sinner MF, et al. Atrial fibrillation among medicare beneficiaries hospitalized with sepsis: incidence and risk factors. Am Heart J. 2013;165(6):949–955.e3.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Walkey AJ, Wiener RS, Ghobrial JM, Curtis LH, Benjamin EJ. Incident stroke and mortality associated with new-onset atrial fibrillation in patients hospitalized with severe sepsis. JAMA. 2011;306(20):2248–54.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Meierhenrich R, Steinhilber E, Eggermann C, Weiss M, Voglic S, Bogelein D, et al. Incidence and prognostic impact of new-onset atrial fibrillation in patients with septic shock: a prospective observational study. Crit Care. 2010;14(3):R108.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Kindem IA, Reindal EK, Wester AL, Blaasaas KG, Atar D. New-onset atrial fibrillation in bacteremia is not associated with C-reactive protein, but is an indicator of increased mortality during hospitalization. Cardiology. 2008;111(3):171–80.PubMedCrossRefGoogle Scholar
  170. 170.
    Knotzer H, Mayr A, Ulmer H, Lederer W, Schobersberger W, Mutz N, et al. Tachyarrhythmias in a surgical intensive care unit: a case-controlled epidemiologic study. Intensive Care Med. 2000;26(7):908–14.PubMedCrossRefGoogle Scholar
  171. 171.
    Goodman S, Shirov T, Weissman C. Supraventricular arrhythmias in intensive care unit patients: short and long-term consequences. Anesth Analg. 2007;104(4):880–6.PubMedCrossRefGoogle Scholar
  172. 172.
    Arora S, Lang I, Nayyar V, Stachowski E, Ross DL. Atrial fibrillation in a tertiary care multidisciplinary intensive care unit—incidence and risk factors. Anaesth Intensive Care. 2007;35(5):707–13.PubMedGoogle Scholar
  173. 173.
    Seguin P, Signouret T, Laviolle B, Branger B, Malledant Y. Incidence and risk factors of atrial fibrillation in a surgical intensive care unit. Crit Care Med. 2004;32(3):722–6.PubMedCrossRefGoogle Scholar
  174. 174.
    Bender JS. Supraventricular tachyarrhythmias in the surgical intensive care unit: an under-recognized event. Am Surg. 1996;62(1):73–5.PubMedGoogle Scholar
  175. 175.
    Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370(17):1583–93.PubMedCrossRefGoogle Scholar
  176. 176.
    Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310(16):1683–91.PubMedCrossRefGoogle Scholar
  177. 177.
    Fan HB, Yang DL, Chen AS, Li Z, Xu LT, Ma XJ, et al. Sepsis-associated cholestasis in adult patients: a prospective study. Am J Med Sci. 2013;346(6):462–6.PubMedCrossRefGoogle Scholar
  178. 178.
    Chow AW, Guze LB. Bacteroidaceae bacteremia: clinical experience with 112 patients. Medicine (Baltimore). 1974;53(2):93–126.CrossRefGoogle Scholar
  179. 179.
    Franson TR, Hierholzer Jr WJ, LaBrecque DR. Frequency and characteristics of hyperbilirubinemia associated with bacteremia. Rev Infect Dis. 1985;7(1):1–9.PubMedCrossRefGoogle Scholar
  180. 180.
    Henry S, DeMaria Jr A, McCabe WR. Bacteremia due to fusobacterium species. Am J Med. 1983;75(2):225–31.PubMedCrossRefGoogle Scholar
  181. 181.
    Quale JM, Mandel LJ, Bergasa NV, Straus EW. Clinical significance and pathogenesis of hyperbilirubinemia associated with Staphylococcus aureus septicemia. Am J Med. 1988;85(5):615–8.PubMedCrossRefGoogle Scholar
  182. 182.
    Torres JM, Cardenas O, Vasquez A, Schlossberg D. Streptococcus pneumoniae bacteremia in a community hospital. Chest. 1998;113(2):387–90.PubMedCrossRefGoogle Scholar
  183. 183.
    Harbrecht BG, Zenati MS, Doyle HR, McMichael J, Townsend RN, Clancy KD, et al. Hepatic dysfunction increases length of stay and risk of death after injury. J Trauma. 2002;53(3):517–23.PubMedCrossRefGoogle Scholar
  184. 184.
    Brienza N, Dalfino L, Cinnella G, Diele C, Bruno F, Fiore T. Jaundice in critical illness: promoting factors of a concealed reality. Intensive Care Med. 2006;32(2):267–74.PubMedCrossRefGoogle Scholar
  185. 185.
    Helftenbein A, Windolf J, Sanger P, Hanisch E. Incidence and prognosis of postoperative jaundice in surgical intensive care patients. Chirurg. 1997;68(12):1292–6.PubMedCrossRefGoogle Scholar
  186. 186.
    Kramer L, Jordan B, Druml W, Bauer P, Metnitz PG, Austrian Epidemiologic Study on Intensive Care, ASDI Study Group, Incidence and prognosis of early hepatic dysfunction in critically ill patients—a prospective multicenter study. Crit Care Med 2007;35(4):1099–1104.Google Scholar
  187. 187.
    Schwartz DB, Bone RC, Balk RA, Szidon JP. Hepatic dysfunction in the adult respiratory distress syndrome. Chest. 1989;95(4):871–5.PubMedCrossRefGoogle Scholar
  188. 188.
    Zhai R, Sheu CC, Su L, Gong MN, Tejera P, Chen F, et al. Serum bilirubin levels on ICU admission are associated with ARDS development and mortality in sepsis. Thorax. 2009;64(9):784–90.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Harbrecht BG, Doyle HR, Clancy KD, Townsend RN, Billiar TR, Peitzman AB. The impact of liver dysfunction on outcome in patients with multiple injuries. Am Surg. 2001;67(2):122–6.PubMedGoogle Scholar
  190. 190.
    Esteban A, Anzueto A, Frutos F, Alia I, Brochard L, Stewart TE, et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA. 2002;287(3):345–55.PubMedCrossRefGoogle Scholar
  191. 191.
    Fuhrmann V, Kneidinger N, Herkner H, Heinz G, Nikfardjam M, Bojic A, et al. Hypoxic hepatitis: underlying conditions and risk factors for mortality in critically ill patients. Intensive Care Med. 2009;35(8):1397–405.PubMedCrossRefGoogle Scholar
  192. 192.
    Henrion J, Schapira M, Luwaert R, Colin L, Delannoy A, Heller FR. Hypoxic hepatitis: clinical and hemodynamic study in 142 consecutive cases. Medicine. 2003;82(6):392–406.PubMedCrossRefGoogle Scholar
  193. 193.
    Birrer R, Takuda Y, Takara T. Hypoxic hepatopathy: pathophysiology and prognosis. Intern Med. 2007;46(14):1063–70.PubMedCrossRefGoogle Scholar
  194. 194.
    Jager B, Drolz A, Michl B, Schellongowski P, Bojic A, Nikfardjam M, et al. Jaundice increases the rate of complications and one-year mortality in patients with hypoxic hepatitis. Hepatology. 2012;56(6):2297–304.PubMedCrossRefGoogle Scholar
  195. 195.
    Johnson RD, O'Connor ML, Kerr RM. Extreme serum elevations of aspartate aminotransferase. Am J Gastroenterol. 1995;90(8):1244–5.PubMedGoogle Scholar
  196. 196.
    Fuhrmann V, Madl C, Mueller C, Holzinger U, Kitzberger R, Funk GC, et al. Hepatopulmonary syndrome in patients with hypoxic hepatitis. Gastroenterology. 2006;131(1):69–75.PubMedCrossRefGoogle Scholar
  197. 197.
    Fuchs S, Bogomolski-Yahalom V, Paltiel O, Ackerman Z. Ischemic hepatitis: clinical and laboratory observations of 34 patients. J Clin Gastroenterol. 1998;26(3):183–6.PubMedCrossRefGoogle Scholar
  198. 198.
    Silvestre JP, Coelho LM, Povoa PM. Impact of fulminant hepatic failure in C-reactive protein? J Crit Care. 2010;25(4):657.e7–12.CrossRefGoogle Scholar
  199. 199.
    Grau T, Bonet A, Rubio M, Mateo D, Farre M, Acosta JA, et al. Liver dysfunction associated with artificial nutrition in critically ill patients. Crit Care. 2007;11(1):R10.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Watanakunakorn C, Chan SJ, Demarco DG, Palmer JA. Staphylococcus aureus bacteremia: significance of hyperbilirubinemia. Scand J Infect Dis. 1987;19(2):195–203.PubMedCrossRefGoogle Scholar
  201. 201.
    Schuster DP, Rowley H, Feinstein S, McGue MK, Zuckerman GR. Prospective evaluation of the risk of upper gastrointestinal bleeding after admission to a medical intensive care unit. Am J Med. 1984;76(4):623–30.PubMedCrossRefGoogle Scholar
  202. 202.
    Fusamoto H, Hagiwara H, Meren H, Kasahara A, Hayashi N, Kawano S, et al. A clinical study of acute gastrointestinal hemorrhage associated with various shock states. Am J Gastroenterol. 1991;86(4):429–33.PubMedGoogle Scholar
  203. 203.
    Khan F, Parekh A, Patel S, Chitkara R, Rehman M, Goyal R. Results of gastric neutralization with hourly antacids and cimetidine in 320 intubated patients with respiratory failure. Chest. 1981;79(4):409–12.PubMedCrossRefGoogle Scholar
  204. 204.
    Harris SK, Bone RC, Ruth WE. Gastrointestinal hemorrhage in patients in a respiratory intensive care unit. Chest. 1977;72(3):301–4.PubMedCrossRefGoogle Scholar
  205. 205.
    Groll A, Simon JB, Wigle RD, Taguchi K, Todd RJ, Depew WT. Cimetidine prophylaxis for gastrointestinal bleeding in an intensive care unit. Gut. 1986;27(2):135–40.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Brown RB, Klar J, Teres D, Lemeshow S, Sands M. Prospective study of clinical bleeding in intensive care unit patients. Crit Care Med. 1988;16(12):1171–6.PubMedCrossRefGoogle Scholar
  207. 207.
    Pimentel M, Roberts DE, Bernstein CN, Hoppensack M, Duerksen DR. Clinically significant gastrointestinal bleeding in critically ill patients in an era of prophylaxis. Am J Gastroenterol. 2000;95(10):2801–6.PubMedCrossRefGoogle Scholar
  208. 208.
    Cook DJ, Fuller HD, Guyatt GH, Marshall JC, Leasa D, Hall R, et al. Risk factors for gastrointestinal bleeding in critically ill patients. canadian critical care trials group. N Engl J Med. 1994;330(6):377–81.PubMedCrossRefGoogle Scholar
  209. 209.
    Hastings PR, Skillman JJ, Bushnell LS, Silen W. Antacid titration in the prevention of acute gastrointestinal bleeding: a controlled, randomized trial in 100 critically ill patients. N Engl J Med. 1978;298(19):1041–5.PubMedCrossRefGoogle Scholar
  210. 210.
    Garvey JM, Fogelman MJ. Septic peptic ulceration. J Trauma. 1966;6(5):644–65.PubMedCrossRefGoogle Scholar
  211. 211.
    Altemeier WA, Fullen WD, McDonough JJ. Sepsis and gastrointestinal bleeding. Ann Surg. 1972;175(5):759–70.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Pulmonary, Allergy and Critical Care DivisionPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  2. 2.Pulmonary, Allergy and Critical Care DivisionPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations