Skip to main content

Bioremediation—A Ecosafe Approach for Dairy Effluent Treatment

  • Chapter
  • First Online:

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

The dairy industry involves processing of raw milk into products like consumer milk, butter, cheese etc. The quantity of water required in a milk processing plant depends upon the size of the plant, generally expressed in terms of the maximum weight of milk handled in a single day, and the processes involved. The daily volume of water required may vary widely, depending mainly on the availability of water and the control of all water using operation in the amount of water needed for the operations which involves continuous flow, for rinsing and washing and is not necessarily proportional to the amount of product processed. Most of the waste water discharged into water bodies, disturbs the ecological balance and deteriorates the water quality. The casein precipitation from waste decomposes further into highly odorous black sludge. Effluent from milk processing unit contains soluble organics, suspended solids, trace organics which releases gases, causes bad taste and odour, impart colour and turbidity, and promote eutrophication. Bioremediation is a ecosafe approach for treating the dairy effluent without disturbing the environment. This review deals about characteristic of dairy effluent and Microorganisms used in the bioremediation of the dairy industry wastes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aelion CM, Swindoll CM, Pfaender FK (1987) Adaptation to and bioremediation of xenobiotic compounds by microbial communities from a pristine aquifer. Appl Environ Microbiol 53:2212–2217

    CAS  Google Scholar 

  • Alvarez-Manteos P, Pereda-Marin J, Carta-Escobar F, Duran-Barrantes MM, Guillen-Jimenez E (2000) Influence of inoculum and pH on dairy effluent biodegradation and mineralization. Chem Biochem Eng 14:101–106

    Google Scholar 

  • Anderson TM, Bodie EA, Goodman N, Schwartz RD (1986) Inhibitory effect of autoclaving whey-based medium on propionic acid production by Propionibacterium shermanii. Appl Environ Microbiol 51:427–428

    CAS  Google Scholar 

  • Aouidi F, Khelifi E, Asses N (2010) Use of cheese whey to enhance Geotrichum candidum biomass production in olive mill wastewater. J Ind Microbiol Biotechnol 37:877–882

    Article  CAS  Google Scholar 

  • Baskaran K, Palmowski LM, Watson BM (2003) Wastewater reuse and treatment options for the dairy industry. Water Sci Technol 3:85–91

    CAS  Google Scholar 

  • Brown HB, Pico RF (1979) Characterization and treatment of dairy wastes in the municipal treatment system. Proceedings of 34th purdue industrial waste conference, pp 326–334

    Google Scholar 

  • Carrasco EF, Omil F, Garrido JM, Arrojo B, Mendez R (2004) Advanced monitoring and supervision of biological treatment of complex dairy effluents in a full-scale plant. Biotechnol Prog 20:992–997

    Google Scholar 

  • Corrons MA, Bertucci JI, Liggieri CS, López LMI, Bruno M (2012) Milk clotting activity and production of bioactive peptides from whey using Maclura pomifera proteases. Food Sci Technol 47:103–109

    CAS  Google Scholar 

  • Daverey A, Pakshirajan K, Sangeetha P (2009) Sophorolipids production by Candida bombicola using synthetic dairy wastewater. Int Sch Sci Res Innovation 3:466–468

    Google Scholar 

  • Dott W, Feidieker D, Steiof M, Becker PM, Kaompfer P (1995) Comparison of ex situ and in situ techniques for bioremediation of hydrocarbon polluted soils. Int Biodeterior Biodeg 35:301–316

    Article  CAS  Google Scholar 

  • Gomaa EZ (2013) Antimicrobial activity of a biosurfactant produced by Bacillus licheniformis strain M104 grown on whey. Braz Arch Biol Technol 56:259–268

    Article  CAS  Google Scholar 

  • Litchfield CD (1993) In: Levin MA, Gealt MA (eds) In situ bioremediation: bases and practices. Biotechnology of industrial and hazardous waste, McGraw-Hill, USA, pp. 167–195

    Google Scholar 

  • Nelson CH, Hicks RJ, Andrews SD (1996) Insitu bioremediation: an integrated system approach: biotechnology in industrial waste treatment and bioremediation. In: Hickey RF, Smith G (eds) CRC, Lewis Publishers, USA, pp 243–268

    Google Scholar 

  • Pandian SR, Deepak V, Kalishwaralal K, Jeyaraj M, Rameshkumar N, Gurunathan S (2009) Synthesis of PHB nanoparticles from optimized medium utilizing dairy industrial waste using Brevibacterium casei SRKP2: a green chemistry approach. Colloids Surf, B 74:266–273

    Article  CAS  Google Scholar 

  • Pandian SR, Deepak V, Kalishwaralal K, Rameshkumar N, Jeyaraj M, Gurunathan S (2010) Optimization and fed-batch production of phb utilizing dairy waste and sea water as nutrient sources by Bacillus megaterium SRKP-3. Bioresour Technol 101:705–711

    Article  Google Scholar 

  • Parrondo J, García LA, Díaz JM (2000) Production of an alcoholic beverage by fermentation of whey permeate with Kluyveromyces fragilisI: primary metabolism. J Inst Brew 106:367–376

    Article  CAS  Google Scholar 

  • Páez G, Jiménez E, Mármol Z, Ferrer J, Sulbarán B, Ojeda G, Araujo K, Rincón M (2008) Perfil de aminoácidos de la proteínaunicelular de Kluyveromyces marxianus var marxianus. Interciencia 33:297–300

    Google Scholar 

  • Perle M, Kimchie S, Shelef G (1995) Some biochemical aspects of the anaero-bic degradation of dairy wastewater. Water Res 29:1549–1554

    Article  CAS  Google Scholar 

  • Reyes-Nava LA, Briones-Martínez R, Cortés-Vázquez MI (2006) Funcionalidad de péptidoscatiónicos y aniónicosproducidosporhidrólisisenzimática de proteínas de suerolácteo. V Memories international congress of biochemical engineering, XVI National congress of biochemical engineering, VI Scientific Conference of Molecular Biomedicine and Biotechnology.VI JC de Biomedicina, B Molecular. Tuxtla Gutiérrez Chiapas, México

    Google Scholar 

  • Schöberl P, Huber L (1988) Ecologically relevant Dten of non-surfactant ingredients in detergents and cleaning agents. Ten side Surfact Deter 25:99–107

    Google Scholar 

  • Woskow SA, Glatz BA (1991) Propionic acid production by a propionic acid-tolerant strain of Propionibacterium acidipropionici in batch and semicontinuous fermentationt. Appl Environ Microbiol 57:2821–2828

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Punnagaiarasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Punnagaiarasi, A., Elango, A., Rajarajan, G., Prakash, S. (2017). Bioremediation—A Ecosafe Approach for Dairy Effluent Treatment. In: Prashanthi, M., Sundaram, R., Jeyaseelan, A., Kaliannan, T. (eds) Bioremediation and Sustainable Technologies for Cleaner Environment. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-48439-6_4

Download citation

Publish with us

Policies and ethics