Skip to main content

Bioremediation of Congo-Red Dye by Using Silver Nanoparticles Synthesized from Bacillus sps

  • Chapter
  • First Online:
Bioremediation and Sustainable Technologies for Cleaner Environment

Abstract

Bioremediation using a variety of microbes for the xenobiotics degradation seems a green solution to the problem of environmental pollution. Different bacteria have the potentials to degrade complex organic compounds into simpler fragments and sometimes achieve complete mineralization. The present study, deliberate the synthesis of silver nanoparticles (AgNPs) using different bacillus species like B. megaterium (SIV01), B. subtilis (SIV02), B. megaterium (MNS1), B. subtilis (001), B. licheniformis (P-2) and their ability to decolorize the dye Congo red. The synthesized AgNPs were characterized using UV visible spectrophotometer, FTIR and SEM. The UV Vis Spectrum results showed that the Bacillus megaterium (SIV01) to be the most potential organism for the synthesis of AgNPs among the different strains used which is confirmed by high absorbance value at 450 nm. The adsorption and decolourization capacity was found to be high for all the strains which was exihibited by high Langmuir and Freundlich isotherm constants. The synthesized silver nanoparticles showed significant antibacterial activity against E. coli. Interestingly, the synthesized silver nanoparticles showed antibacterial activity against its own source microorganisms, this peculiar behaviour exhibited by the bacillus silver nanoparticles, is yet to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A (2009) One step synthesis and characterization of gold nanoparticles and their antibacterial activities against E. coli (ATCC 25922 strain). Int J Theor Appl Sci 1:1–4

    Google Scholar 

  • Antarikshsaxena K, Tripathi RM, Singh RP (2012) Biological synthesis of silver nanoparticles by using onion (allium cepa) extract and their antibacterial activity. Dig J Nanomaterials Biostructures 5:427–432

    Google Scholar 

  • Bai SR, Abraham TE (2009) Biosorption of Cr (VI) from an aqueous solution by Rhizopus nigricans. Biores Tech 79:73–79

    Article  Google Scholar 

  • Bansal M, Rautaray R, Ahmad K, Sastry N (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 143:3033–3305

    Google Scholar 

  • Barragan EB, Carlos C, Marquez MC (2007) Biodegradation of azo dyes by bacteria inoculated on solid media. Dyes Pigm 75:73–81

    Article  CAS  Google Scholar 

  • Bekir M, Tugrul Y, Ali S (2011) Investigation of photocatalytic effect of SnO2 nanoparticles synthesized by hydrothermal method on the decolorization of two organic dyes. Photochem Photobiol 87:267–274

    Article  Google Scholar 

  • Bishnoi B (2007) Biosorption of Cr (VI) with Tricoderma viride immobilized fungal biomass and cell free Ca-alginate beads. Indian J Exp biol 45:657–664

    CAS  Google Scholar 

  • Blaser SA, Bogle KA, Dhole SA et al (2006) Silver nanoparticles: synthesis and size control by electron irradiation. Nanotechnology 17:3204–3208

    Article  Google Scholar 

  • Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:17–172

    Article  Google Scholar 

  • Chompuchan C, Satapanajaru T, Suntornchot P et al (2009) Decolorization of reactive black 5 and reactive red 198 using nanoscale zerovalent iron. World Acad Sci Eng Technol 49:130–134

    Google Scholar 

  • Elechiguerra JL, Burt K, Morones JR et al (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 29:3–12

    Google Scholar 

  • Emil R (2007) Size matters: why nanomaterials are different. Chem 35:583–592

    Google Scholar 

  • Favero N, Massimino ML (1991) In vitro uptake of cadmium by basidiomycete Pleurotus ostreatus. Biotechnol Letter 10:701–704

    Article  Google Scholar 

  • Fortin D, Beveridge TJ (2009) Mechanistic routes towards biomineral surface development. In: Biomineralisation. Baeuerlein E (ed). Biology to biotechnology and medical application, Wiley, 9:294

    Google Scholar 

  • Gabriel J, Mokrejs M, Bily J, Rychlovsky P (1994) Accumulation of heavy metals by some wood-rotting fungi. Folia Microbiol 39:115–118

    Article  CAS  Google Scholar 

  • Gajbhiye MM, Jayendra K, Avinash I et al (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole, nanomedicine: nanotechnology. Biol Med 55:382–386

    Google Scholar 

  • Guzmán GM, Jean D, Stephan G (2008) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. World Acad Sci Eng Technol 43:357–364

    Google Scholar 

  • Ibrahim MM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:265–275

    Article  Google Scholar 

  • Jesica T, Victor S, Arturo C et al (2010) Removal of indigo blue in aqueous solution using fe/cu nanoparticles and c/fe–cu nanoalloy composites. Water Air Soil Pollute 207:307–317

    Article  Google Scholar 

  • Kadir A, Joseph R, Lakowicz K et al (2011) Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date. Anal Bioanal Chem 382:926–933

    Google Scholar 

  • Kim SH, Choi BS, Kang K et al (2007) Low temperature synthesis and growth mechanism of Ag nanowires. J Alloy Compd 433:261–264

    Article  CAS  Google Scholar 

  • Lakshmipriya T, Sivakumar S, Lavanya R, Nadihini S, Pavithra N (2013) A review on biogenic nanosilver -an emerging biomedical product. J Biodivers Environ Sci 3:26–38

    Google Scholar 

  • Lakshmipriya T, Meenambal T, Lavanya SR, Nandini S, Pavithra P, Swathi S, Srivani I (2015) Biosynthesis of nanosilver using Indian medicinal plants and evaluation of their antibacterial activity. Int J Nanopart 8:262–288

    Article  Google Scholar 

  • Linga MR, Savithramma N (2011) Biological synthesis of silver nanoparticles using svensonia hyderabadensis leaf extract and evaluation of their antimicrobial efficacy. J Pharm Sci Res 3:1117–1121

    Google Scholar 

  • Manoj S, Manikandan S, Kumaraguru A (2011) Nanoparticles: a new technology with wide applications. Res J Nanosci Nanotechnol 1:1–11

    Article  Google Scholar 

  • Mohamed M, Othman I, Mohamed RM (2007) Synthesis and characterization of MnOx/TiO2 nanoparticles for photocatalytic oxidation of indigo carmine dye. J Photochem Photobiol A 19:153–161

    Google Scholar 

  • Mohammad A, Nasser M, Elnaz ghazalian K (2011) Synthesis of ZnO nanoparticles at different conditions: a comparison of photocatalytic activity. Dig J Nanomaterials Biostructures 6:467–474

    Google Scholar 

  • Mohan AG, Tuhin S, Sanjay G (2007) An ecofriendly synthesis of silver nano-bioconjugates by Penicillium citrinum (MTCC9999) and its antimicrobial effect. AMB Express 3:16

    Google Scholar 

  • Moores A, Goettmann F (2011) The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem 5:1121–1132

    Google Scholar 

  • Nagajyothi PC, Lee KD (2011) Synthesis of plant-mediated silver nanoparticles using Dioscoreabatatas rhizome extract and evaluation of their antimicrobial activities. J Nanomaterials 11:45–47

    Google Scholar 

  • Nalenthiran P, Sambandam A, Govindarajan K et al (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanoparticle Res 11:1811–1815

    Article  Google Scholar 

  • Namasivayam R, Ranganathan K (1995) Removal of Fe (II) by waste fe(III)/Cr (III) hydroxide from aqueous solution and electroplating industry waste water. Indian J Chem Technol 32:351–358

    Google Scholar 

  • Nelly Y (2011) Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis. Nanomaterials Appl Prop 2:890–894

    Google Scholar 

  • Nithya R, Ragunathan R (2012) Decolorization of the dye congo red by pleurotus sajor caju silver nanoparticle. IPCBEE 9:12–15

    Google Scholar 

  • Percival PG, Bowler J, Dolman A (2007a) Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model. Int Wound J 6:186–191

    Article  Google Scholar 

  • Percival SL, Bowler PG, Dolman J (2007b) Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model. Int Wound 4:186–191

    Article  Google Scholar 

  • Popescu M, Velea A, Lőrinczi A (2010) Biogenic production of nanoparticle. Dig J Nanomaterials Biostructures 5:1035–1040

    Google Scholar 

  • Rajeev Wahi K, Yunping L, Mejia F et al (2005) Photodegradation of congo red catalyzed by nanosized TiO2, journal of molecular catalysis. Chemical 242:48–56

    Google Scholar 

  • Rajeshkannan R, Rajasimman M, Rajamohan N (2011) Decolourization of malachite green using tamarind seed: optimization, isotherm and kinetic studies. Chem Ind Chem Eng 17:67–79

    Article  CAS  Google Scholar 

  • Ramanathan V, Kalimuthu K, Shubaash G, Sangiliyandi G (2009) The burgeoning therapeutic molecule and its green synthesis. Biotechnol Adv 27:924–937

    Article  Google Scholar 

  • Rashmi D (2013) Green synthesis of silver nanoparticles using Termenalia chebula an assessment of its anti-microbial activity. Int J Pure Appl Biosci 1:1–6

    Google Scholar 

  • Sahayaraj K, Rajesh S (2007) Bionanoparticles: synthesis and antimicrobial applications, science against microbial pathogens. Communicating Curr Res Technol Adv ISBN 5:204–215

    Google Scholar 

  • Saifuddin N, Wong CW, Nur Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem 6:61–70

    Article  CAS  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. J Nanomaterials 1:517–520

    CAS  Google Scholar 

  • Sivakumar J, Premkumar C, Santhanam P et al (2007) Biosynthesis of silver nanoparticles using calotropis gigantean leaf. Afr J B Appl Sci 3:265–270

    Google Scholar 

  • Strong LE, West JL (2011) Thermally responsive polymer-nanoparticle composites for biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:307–317

    Article  CAS  Google Scholar 

  • Teng OS, Ong K, Sin LP et al (2011) Dye Waste Treat Water 3:157–176

    Google Scholar 

  • Timothy V, Duncan K (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 7:80–84

    Google Scholar 

  • Tolaymat T, Badawa A, Genaidy K et al (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in synthesis and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Tot Environ 5:999–1006

    Article  Google Scholar 

  • Virender K, Sharma S, Ria S et al (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  Google Scholar 

  • Wright JB, Lam J, Buret AG et al (2005) Early healing events in a porcine model contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen 10:141–151

    Article  Google Scholar 

  • Yang LB, Shen YH, Xie AJ et al (2007) Synthesis of Se nanoparticles by using TSA ion and its photocatalytic application for decolorization of congo red under UV irradiation. Mater Res Bull 43:572–582

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Priya Thyagarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Thyagarajan, L.P., Sudhakar, S., Meenambal, T. (2017). Bioremediation of Congo-Red Dye by Using Silver Nanoparticles Synthesized from Bacillus sps . In: Prashanthi, M., Sundaram, R., Jeyaseelan, A., Kaliannan, T. (eds) Bioremediation and Sustainable Technologies for Cleaner Environment. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-48439-6_11

Download citation

Publish with us

Policies and ethics