Skip to main content

Two-Dimensional Materials

  • Chapter
  • First Online:

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In this chapter we present the recently discovered two-dimensional materials and their physical properties, which are useful for nanoelectronic devices. The synthesis methods play a central role in this chapter, since this is the key issue in the further development of this new emerging area of research. Details about characterization of these atomically thin materials are intrinsically linked to the growth methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akinwande D, Petrone N, Hone J (2014) Two-dimensional flexible nanoelectronics. Nat Commun 5:5678

    Article  Google Scholar 

  • Aretouli KE, Tsipas P, Tsoutsou D, Marquez-Velasco J, Xenogiannopoulou E, Giamini SA, Vassalou E, Kelaidis N, Dimoulas A (2015) Two-dimensional semiconductor HfSe2 and MoSe2/HfSe2 van der Waals heterostructures by molecular beam epitaxy. Appl Phys Lett 106:143105

    Article  Google Scholar 

  • Benameur MM, Radisavljevic B, Héron JS, Sahoo S, Berger H, Kis A (2011) Visibility of dichalcogenide nanolayers. Nanotechnology 22:125706

    Article  Google Scholar 

  • Bertollazi S, Brivio J, Kis A (2011) Stretching and breaking of ultrathin MoS2. ACS Nano 5:9703–9709

    Article  Google Scholar 

  • Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926

    Article  Google Scholar 

  • Cai Y, Zhang G, Zhang Y-W (2014) Layer-dependent band alignment and work function of few-layer phosphorene. Sci Rep 4:6677

    Article  Google Scholar 

  • Castellanos-Gomez A, Roldán R, Cappelluti E, Buscema M, Guinea F, van der Zant HSJ, Steele GA (2013) Local strain engineering in atomically thin MoS2. Nano Lett 13:5361–5366

    Article  Google Scholar 

  • Chiu K-C, Zhang X-Q, Liu X, Menon VM, Chen Y-F, Wu J-M, Lee Y-H (2015) Synthesis and applications of monolayer semiconductors (June 2015). IEEE J Quant Electron 51:0600100

    Article  Google Scholar 

  • Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275

    Article  Google Scholar 

  • Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim H-Y, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

    Article  Google Scholar 

  • Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116

    Article  Google Scholar 

  • Eichfeld SM, Hossain L, Lin Y-C, Piasecki AF, Kupp B, Birdwell AG, Burke RA, Lu N, Peng X, Li J, Azcatl A, McDonnell S, Wallace RW, Kim MJ, Mayer TS, Redwing JM, Robinson JA (2015) Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano 9:2080–2087

    Article  Google Scholar 

  • Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang JS, Bechtel HA, Desai SB, Kronast F, Unal AA, Conti G, Conlon C, Palsson GK, Martin MC, Minor AM, Fadley CS, Yablonovitch E, Maboudian R, Javey A (2014) Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc Nat Am Sci 111:6198–6202

    Article  Google Scholar 

  • Feng PX-L, Wang Z, Lee J, Yang R, Zheng X, He K, Shan J (2014) Two-dimensional nanoelectromechanical systems (2D NEMS) via atomically-thin semiconducting crystals vibrating at radio frequencies. 2014 IEEE Int Electron Devices Meet (IEDM):14.196–14.199

    Google Scholar 

  • Feng Q, Zhu Y, Hong J, Zhang M, Duan W, Mao N, Wu J, Xu H, Dong F, Lin F, Jin C, Wang C, Zhang J, Xie L (2014b) Growth of the large-area 2D MoS2(1-x)Se2x semiconductor alloys. Adv Mater 26:2648–2653

    Article  Google Scholar 

  • Feng Q, Mao N, Wu J, Xu H, Wang C, Zhang J, Xie L (2015) Growth of MoS2(1-x)Se2x (x = 0.41 − 1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano 9:7450–7455

    Article  Google Scholar 

  • Ganatra R, Zhang Q (2014) Few-layer MoS2: a promising layered semiconductor. ACS Nano 8:4074–4099

    Article  Google Scholar 

  • Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419–425

    Article  Google Scholar 

  • Gong C, Zhang H, Wang W, Colombo L, Wallace RM, Cho K (2013) Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl Phys Lett 103:053513; (2015) Erratum. Appl Phys Lett 107:139904

    Google Scholar 

  • Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R, Yakobson BI, Terrones H, Terrones M, Tay BK, Lou J, Pantelides ST, Liu Z, Zhou W, Ajayan PM (2014) Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater 13:1135–1142

    Article  Google Scholar 

  • Huang J-K, Pu J, Hsu C-L, Chiu M-H, Juang Z-Y, Chang Y-H, Chang W-H, Iwasa Y, Takenobu T, Li L-J (2014) Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8:923–930

    Article  Google Scholar 

  • Huang YL, Chen Y, Zhang W, Quek SY, Chen C-H, Li L-J, Hsu W-T, Chang W-H, Zheng YJ, Chen W, Wee ATS (2015) Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat Commun 6:6298

    Article  Google Scholar 

  • Jin Y, Keum DH, An S-J, Kim J, Lee HS, Lee YH (2015) A van der Waals homojunction: ideal p-n diode behavior in MoSe2. Adv Mat 27:5534–5540

    Article  Google Scholar 

  • Kanazawa T, Amemiya T, Ishikawa A, Upadhyaya V, Tsuruta K, Tanaka T, Miyamoto Y (2016) Few-layer HfS2 transistors. Sci Rep 6:22277

    Article  Google Scholar 

  • Kang J, Tongay S, Zhou J, Li J, Wu J (2013) Band offsets and heterostructures of two-dimensional semiconductors. Appl Phys Lett 102:012111

    Article  Google Scholar 

  • Kang K, Xie S, Huang L, Han Y, Huang PY, Mak KF, Kim C-J, Muller D, Park J (2015) High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520:656–660

    Article  Google Scholar 

  • Kaul AB (2014) Two-dimensional layered materials: Structure, properties and prospects for device applications. J Mater Res 29:348–361

    Article  Google Scholar 

  • Le Lay G, Aufray B, Léandri G, Oughaddou H, Biberian J-P, De Padova P, Dávila ME, Ealet B, Kara A (2009) Physics and chemistry of silicene nano-ribbons. Appl Surf Sci 256:524–529

    Article  Google Scholar 

  • Lee Y-H, Zhang X-Q, Zhang W, Chang M-T, Lin C-T, Chang K-D, Yu Y-C, Wang JT-W, Chang C-S, Li L-J, Lin T-W (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24:2320–2325

    Article  Google Scholar 

  • Lee J, Wang Z, He K, Shan J, Feng PX-L (2013) High frequency MoS2 nanomechanical resonators. ACS Nano 7:6086–6091

    Article  Google Scholar 

  • Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314

    Article  Google Scholar 

  • Li P, You Z, Cui T (2013) Molybdenum disulfide dc contact MEMS shunt switch. J Micromech Microeng 23:045026

    Article  Google Scholar 

  • Liang Y, Huang S, Soklaski R, Yang L (2013) Quasiparticle band-edge energy and band offsets of monolayer molybdenum and tungsten chalcogenides. Appl Phys Lett 103:0421106

    Google Scholar 

  • Lin Y-C, Zhang W, Huang J-K, Liu K-K, Lee Y-H, Liang C-T, Chu C-W, Li L-J (2012) Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4:6637–6641

    Article  Google Scholar 

  • Lopez-Sanchez O, Llado EA, Koman V, Fontcuberta i Morral A, Radenovic A, Kis A (2014) Light generation and harvesting in a van der Waals heterostructure. ACS Nano 8:3042–3048

    Article  Google Scholar 

  • Lu W, Nan H, Hong J, Chen Y, Chen Z, Liang Z, Ma X, Ni Z, Jin C, Zhang Z (2014) Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res 7:853–859

    Article  Google Scholar 

  • Miró P, Audiffred M, Heine T (2014) An atlas of two-dimensional materials. Chem Soc Rev 43:6537–6554

    Article  Google Scholar 

  • Miwa JA, Dendzik M, Grønborg SS, Bianchi M, Lauritsen JV, Hofmann P, Ulstrup S (2015) Van der Waals epitaxy of two-dimensional MoS2-graphene heterostructures in ultrahigh vacuum. ACS Nano 9:6502–6510

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  • Ramasubramaniam A, Naveh D, Towe E (2011) Tunable bandgaps in bilayer metal dichalcogenides. Phys Rev B 84:205325

    Article  Google Scholar 

  • Schwierz F, Peza J, Granzner R (2015) Two-dimensional materials and their prospects for transistor electronics. Nanoscale 7:8261–8283

    Article  Google Scholar 

  • Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang DS, Liu K, Ji J, Sinclair R, Wu J (2014) Tuning interlayer coupling in the large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett 14:3185–3190

    Article  Google Scholar 

  • Utama MIB, Zhang Q, Zhang J, Yuan Y, Belarre FJ, Arbiol J, Xiong Q (2013) Recent developments and future directions in the growth of nanostructures by van der Waals epitaxy. Nanoscale 9:3570–3588

    Article  Google Scholar 

  • Van der Zande AM, Huang PY, Chenet DA, Berkelbach TC, You Y, Lee G-H, Heinz TF, Reichman DR, Muller DA, Hone JC (2013) Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater 12:554–561

    Article  Google Scholar 

  • Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012) Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys Rev Lett 108:155501

    Article  Google Scholar 

  • Wang S, Wang X, Warner JH (2015) All chemical vapor deposition growth of MoS2: h-BN vertical van der Waals heterostructures. ACS Nano 9:5246–5254

    Article  Google Scholar 

  • Woomer AH, Farnsworth TW, Hu J, Wells RA, Donley CL, Warren SC (2015) Phosphorene: synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano 9:8869–8884

    Article  Google Scholar 

  • Wu S, Huang C, Aivazian G, Ross JS, Cobden DH, Xu X (2013) Vapor-solid growth of high optical quality of MoS2 monolayers with near-unity valley polarization. ACS Nano 7:2768–2772

    Article  Google Scholar 

  • Yu Y, Li C, Liu Y, Su L, Zhang Y, Cao L (2013) Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci Rep 3:1866

    Google Scholar 

  • Yu JH, Lee HR, Hong SS, Kong D, Lee H-W, Wang H, Xiong F, Wang S, Cui Y (2015) Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers. Nano Lett 15:1031–1035

    Article  Google Scholar 

  • Yue R, Barton AT, Zhu H, Azcatl A, Pena LF, Wang J, Peng X, Lu N, Cheng L, Addou R, McDonnell S, Colombo L, Hsu JWP, Kim J, Kim MJ, Wallace RM, Hinkle CL (2015) HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. ACS Nano 9:474–480

    Article  Google Scholar 

  • Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H (2011) Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem Int Ed 50:11093–11097

    Article  Google Scholar 

  • Zhang Y, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications. Acc Chem Res 46:2329–2339

    Article  Google Scholar 

  • Zhang W, Huang Z, Zhang W, Li Y (2014) Two-dimensional semiconductors with possible high room temperature mobility. Nano Res 7:1731–1737

    Article  Google Scholar 

  • Zhang C, Chen Y, Huang J-K, Wu X, Li L-J, Yao W, Tersoff J, Shih C-K (2015) Visualizing band offsets and edge states in bilayer-monolayer transition metal dichalcogenides lateral heterostructures. Nat Commun 7:10349

    Article  Google Scholar 

  • Zhou H, Wang C, Shaw JC, Cheng R, Chen Y, Huang X, Liu Y, Weiss NO, Lin Z, Huang Y, Duan X (2015) Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett 15:709–713

    Article  Google Scholar 

  • Zhu W, Low T, Lee Y-H, Wang H, Farmer DB, Kong J, Xia F, Avouris Ph (2014) Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat Commun 5:3087

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Dragoman .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dragoman, M., Dragoman, D. (2017). Two-Dimensional Materials. In: 2D Nanoelectronics. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-48437-2_2

Download citation

Publish with us

Policies and ethics