Skip to main content

Regularization of Nonlinear Inverse Problems

  • Chapter
  • First Online:
Inverse Problems

Part of the book series: Lecture Notes in Geosystems Mathematics and Computing ((LNGMC))

  • 1551 Accesses

Abstract

Nonlinear inverse problems are much more difficult to solve than linear ones and the corresponding theory is far less developed. Each particular problem may demand a specific regularization. Nevertheless, one can formulate and analyze basic versions of nonlinear Tikhonov regularization and nonlinear iterative methods, which will be done in Sects. 4.1 and 4.6, respectively. These basic versions serve as starting points for regularizations adapted to our nonlinear model problems (Sects. 4.2, 4.5, and 4.6). Nonlinear Tikhonov regularization leads to nonlinear least squares problems. Sections 4.3 and 4.4 present algorithms to solve these numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    If there is no \(\hat{x} \in D\) with \(F(\hat{x}) = y\) due to discretization errors, then hopefully there will at least exist some \(\bar{y} \approx y\) such that a solution \(\hat{x} \in D\) of \(F(x) =\bar{ y}\) exists. If we know δ > 0 such that \(\|\bar{y} - y^{\delta }\|_{2} \leq \delta\), we can tacitly add discretization to measurement errors, interpreting \(\bar{y}\) as “true” right hand side.

  2. 2.

    To arrange multi-indexed components into a vector, a certain index ordering has to be fixed. In case of rectangular index grids, we will always use a row-wise ordering. For example, the indices α ∈ G n for the grid G n defined below, will always be ordered to form the sequence

    $$\displaystyle{(-n,-n),\ldots, (-n,n),\quad \ldots,\quad (n,-n),\ldots, (n,n).}$$
  3. 3.

    This is generally true even if rank(J) = n does not hold, provided only that ∇Z(x i) ≠ 0, see [Bjö96], p. 343.

References

  1. A. Bamberger, G. Chavent, and P. Lailly. Etude mathématique et numérique d’un problème inverse pour l’équation des ondes à une dimension. Rapport LABORIA nr. 226, IRIA, 1977.

    Google Scholar 

  2. M. A. Branch, T. F. Coleman, and Y. Li. A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems. SIAM J. Sci. Comput., 21(1):1–23, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  3. Å. Björck. Numerical Methods for Least Squares Problems. SIAM, 1996.

    Book  MATH  Google Scholar 

  4. G. Chavent. Identification of Functional Parameters in Partial Differential Equations. In R. E. Goodson and M. Polis, editors, Identification of Parameters in Distributed Systems, pages 31–48. The American Society of Mechanical Engineering, 1974.

    Google Scholar 

  5. G. Chavent. Nonlinear Least Squares for Inverse Problems. Springer, 2009.

    MATH  Google Scholar 

  6. H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems. Kluwer Academic Publishers, 1996.

    Book  MATH  Google Scholar 

  7. H. W. Engl, K. Kunisch, and A. Neubauer. Convergence rates for Tikhonov regularisation of non-linear ill-posed problems. Inverse Problems, 5:523–540, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Hanke. A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Problems, 13:79–95, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Hanke. Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems. Numer. Funct. Anal. and Optimiz., 18:971–993, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems. Springer, 1996.

    Book  MATH  Google Scholar 

  11. P. Lailly. The inverse problem in 1-D reflection seismics. In R. Cassinis, editor, The Solution of the Inverse Problem in Geophysical Interpretation, pages 103–140. Plenum Press, 1980.

    Google Scholar 

  12. D. Luenberger and Y. Ye. Linear and Nonlinear Programming. Springer, 2008.

    Book  MATH  Google Scholar 

  13. J. J. Moré. The Levenberg-Marquardt Algorithm: Implementation and Theory. In G. A. Watson, editor, Numerical Analysis. Proceedings Biennial Conference Dundee 1977, Lecture Notes in Mathematics, volume 630, pages 105–116. Springer, 1978.

    Google Scholar 

  14. R. Ramlau. Morozov’s discrepancy principle for Tikhonov regularization of nonlinear operators. Numer. Funct. Anal. Optimization, 23:147–172, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60:259–268, 1992.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Richter, M. (2016). Regularization of Nonlinear Inverse Problems. In: Inverse Problems . Lecture Notes in Geosystems Mathematics and Computing. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-48384-9_4

Download citation

Publish with us

Policies and ethics