Skip to main content

Fat Cell and Fatty Acid Turnover in Obesity

  • Chapter
  • First Online:
Obesity and Lipotoxicity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 960))

Abstract

The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. Inhibition of adipose triglyceride lipase leads to an accumulation of triglyceride, whereas inhibition of hormone-sensitive lipase leads to the accumulation of diacylglycerol. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride turnover. Excess triacylglycerols (TAGs), sterols and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets. Following the release of lipid droplets from endoplasmic reticulum, cytoplasmic lipid droplets increase their volume either by local TAG synthesis or by homotypic fusion. The number and the size of lipid droplet distribution is correlated with obesity. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. NOD-like receptors family pyrin domain containing 3 (NLRP3) inflammasome-dependent caspase-1 activation in hypertrophic adipocytes induces obese adipocyte death by pyroptosis. Actually adipocyte death may be a prerequisite for the transition from hypertrophic to hyperplastic obesity. Major transcriptional factors, CCAAT/enhancer-binding proteins beta and delta, play a central role in the subsequent induction of critical regulators, peroxisome-proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha and sterol regulatory element-binding protein 1, in the transcriptional control of adipogenesis in obesity.

Collectively, in this chapter the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of lipid droplet interactions with the other cellular organelles are reviewed. Furthermore, in addition to lipid droplet growth, the functional link between the adipocyte-specific lipid droplet-associated protein and fatty acid turn-over is also debated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abais, J.M., M. Xia, Y. Zhang, K.M. Boini, and P.-L. Li. 2015. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxidants & Redox Signaling 22: 1111–1129. doi:10.1089/ars.2014.5994.

    Article  CAS  Google Scholar 

  • Abdesselem, H., A. Madani, A. Hani, M. Al-Noubi, N. Goswami, H. Ben Hamidane, A.M. Billing, J. Pasquier, M.S. Bonkowski, N. Halabi, R. Dalloul, M.Z. Sheriff, N. Mesaeli, M. ElRayess, D.A. Sinclair, J. Graumann, and N.A. Mazloum. 2016. SIRT1 limits adipocyte hyperplasia through c-Myc inhibition. The Journal of Biological Chemistry 291: 2119–2135. doi:10.1074/jbc.M115.675645.

    Article  CAS  PubMed  Google Scholar 

  • Alkhouri, N., A. Gornicka, M.P. Berk, S. Thapaliya, L.J. Dixon, S. Kashyap, P.R. Schauer, and A.E. Feldstein. 2010. Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. The Journal of Biological Chemistry 285: 3428–3438. doi:10.1074/jbc.M109.074252.

    Article  CAS  PubMed  Google Scholar 

  • Anthonsen, M.W., L. Rönnstrand, C. Wernstedt, E. Degerman, and C. Holm. 1998. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. The Journal of Biological Chemistry 273: 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Ariotti, N., S. Murphy, N.A. Hamilton, L. Wu, K. Green, N.L. Schieber, P. Li, S. Martin, and R.G. Parton. 2012. Postlipolytic insulin-dependent remodeling of micro lipid droplets in adipocytes. Molecular Biology of the Cell 23: 1826–1837. doi:10.1091/mbc.E11-10-0847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arner, P. 1995. Differences in lipolysis between human subcutaneous and omental adipose tissues. Annals of Medicine 27: 435–438.

    Article  CAS  PubMed  Google Scholar 

  • Arner, P., S. Bernard, M. Salehpour, G. Possnert, J. Liebl, P. Steier, B.A. Buchholz, M. Eriksson, E. Arner, H. Hauner, T. Skurk, M. Rydén, K.N. Frayn, and K.L. Spalding. 2011. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478: 110–113. doi:10.1038/nature10426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arner, P., D.P. Andersson, A. Thörne, M. Wirén, J. Hoffstedt, E. Näslund, A. Thorell, and M. Rydén. 2013. Variations in the size of the major omentum are primarily determined by fat cell number. The Journal of Clinical Endocrinology and Metabolism 98: E897–E901. doi:10.1210/jc.2012-4106.

    Article  PubMed  Google Scholar 

  • Baek, J.-H., S.-J. Kim, H.G. Kang, H.-W. Lee, J.-H. Kim, K.-A. Hwang, J. Song, and K.-H. Chun. 2015. Galectin-3 activates PPARγ and supports white adipose tissue formation and high-fat diet-induced obesity. Endocrinology 156: 147–156. doi:10.1210/en.2014-1374.

    Article  PubMed  CAS  Google Scholar 

  • Beller, M., C. Sztalryd, N. Southall, M. Bell, H. Jäckle, D.S. Auld, and B. Oliver. 2008. COPI complex is a regulator of lipid homeostasis. PLoS Biology 6: e292. doi:10.1371/journal.pbio.0060292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beller, M., K. Thiel, P.J. Thul, and H. Jäckle. 2010. Lipid droplets: A dynamic organelle moves into focus. FEBS Letters 584: 2176–2182. doi:10.1016/j.febslet.2010.03.022.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Or Frank, M., N. Shoham, D. Benayahu, and A. Gefen. 2015. Effects of accumulation of lipid droplets on load transfer between and within adipocytes. Biomechanics and Modeling in Mechanobiology 14: 15–28. doi:10.1007/s10237-014-0582-8.

    Article  PubMed  Google Scholar 

  • Blanchette-Mackie, E.J., N.K. Dwyer, T. Barber, R.A. Coxey, T. Takeda, C.M. Rondinone, J.L. Theodorakis, A.S. Greenberg, and C. Londos. 1995. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. Journal of Lipid Research 36: 1211–1226.

    CAS  PubMed  Google Scholar 

  • Blouin, C.M., S. Le Lay, F. Lasnier, I. Dugail, and E. Hajduch. 2008. Regulated association of caveolins to lipid droplets during differentiation of 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications 376: 331–335. doi:10.1016/j.bbrc.2008.08.154.

    Article  CAS  PubMed  Google Scholar 

  • Blouin, C.M., S. Le Lay, A. Eberl, H.C. Köfeler, I.C. Guerrera, C. Klein, X. Le Liepvre, F. Lasnier, O. Bourron, J.-F. Gautier, P. Ferré, E. Hajduch, and I. Dugail. 2010. Lipid droplet analysis in caveolin-deficient adipocytes: Alterations in surface phospholipid composition and maturation defects. Journal of Lipid Research 51: 945–956. doi:10.1194/jlr.M001016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blüher, M., N. Klöting, S. Wueest, E.J. Schoenle, M.R. Schön, A. Dietrich, M. Fasshauer, M. Stumvoll, and D. Konrad. 2014. Fas and FasL expression in human adipose tissue is related to obesity, insulin resistance, and type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism 99: E36–E44. doi:10.1210/jc.2013-2488.

    Article  PubMed  Google Scholar 

  • Boschi, F., V. Rizzatti, M. Zamboni, and A. Sbarbati. 2014. Lipid droplets fusion in adipocyte differentiated 3 T3-L1 cells: A Monte Carlo simulation. Experimental Cell Research 321: 201–208. doi:10.1016/j.yexcr.2013.12.023.

    Article  CAS  PubMed  Google Scholar 

  • Brasaemle, D.L. 2007. Thematic review series: Adipocyte biology. The perilipin family of structural lipid droplet proteins: Stabilization of lipid droplets and control of lipolysis. Journal of Lipid Research 48: 2547–2559. doi:10.1194/jlr.R700014-JLR200.

    Article  CAS  PubMed  Google Scholar 

  • Brasaemle, D.L., D.M. Levin, D.C. Adler-Wailes, and C. Londos. 2000. The lipolytic stimulation of 3 T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. Biochimica et Biophysica Acta 1483: 251–262.

    Article  CAS  PubMed  Google Scholar 

  • Brune, J.E., M. Kern, A. Kunath, G. Flehmig, M.R. Schön, T. Lohmann, M. Dressler, A. Dietrich, M. Fasshauer, P. Kovacs, M. Stumvoll, M. Blüher, and N. Klöting. 2016. Fat depot-specific expression of HOXC9 and HOXC10 may contribute to adverse fat distribution and related metabolic traits. Obesity (Silver Spring, Md.) 24: 51–59. doi:10.1002/oby.21317.

    Article  CAS  Google Scholar 

  • Carr, R.M., and R.S. Ahima. 2016. Pathophysiology of lipid droplet proteins in liver diseases. Experimental Cell Research 340: 187–192. doi:10.1016/j.yexcr.2015.10.021.

    Article  CAS  PubMed  Google Scholar 

  • Cinti, S., G. Mitchell, G. Barbatelli, I. Murano, E. Ceresi, E. Faloia, S. Wang, M. Fortier, A.S. Greenberg, and M.S. Obin. 2005. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. Journal of Lipid Research 46: 2347–2355. doi:10.1194/jlr.M500294-JLR200.

    Article  CAS  PubMed  Google Scholar 

  • Cleary, M.P., J.A. Brasel, and M.R. Greenwood. 1979. Developmental changes in thymidine kinase, DNA, and fat cellularity in Zucker rats. The American Journal of Physiology 236: E508–E513.

    CAS  PubMed  Google Scholar 

  • Codoñer-Franch, P., V. Valls-Bellés, A. Arilla-Codoñer, and E. Alonso-Iglesias. 2011. Oxidant mechanisms in childhood obesity: The link between inflammation and oxidative stress. Translational Research 158: 369–384. doi:10.1016/j.trsl.2011.08.004.

    Article  PubMed  CAS  Google Scholar 

  • Contreras, J.A., B. Danielsson, C. Johansson, T. Osterlund, D. Langin, and C. Holm. 1998. Human hormone-sensitive lipase: Expression and large-scale purification from a baculovirus/insect cell system. Protein Expression and Purification 12: 93–99. doi:10.1006/prep.1997.0821.

    Article  CAS  PubMed  Google Scholar 

  • Cristancho, A.G., and M.A. Lazar. 2011. Forming functional fat: A growing understanding of adipocyte differentiation. Nature Reviews. Molecular Cell Biology 12: 722–734. doi:10.1038/nrm3198.

    Article  CAS  PubMed  Google Scholar 

  • Dagon, Y., Y. Avraham, and E.M. Berry. 2006. AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochemical and Biophysical Research Communications 340: 43–47. doi:10.1016/j.bbrc.2005.11.159.

    Article  CAS  PubMed  Google Scholar 

  • Dam, V., T. Sikder, and S. Santosa. 2016. From neutrophils to macrophages: Differences in regional adipose tissue depots. Obesity Reviews 17: 1–17. doi:10.1111/obr.12335.

    Article  CAS  PubMed  Google Scholar 

  • Deepa, S.S., M.E. Walsh, R.T. Hamilton, D. Pulliam, Y. Shi, S. Hill, Y. Li, and H. Van Remmen. 2013. Rapamycin modulates markers of mitochondrial biogenesis and fatty acid oxidation in the adipose tissue of db/db mice. Journal of Biochemical and Pharmaceutical Research 1: 114–123.

    Google Scholar 

  • Deng, J., S. Liu, L. Zou, C. Xu, B. Geng, and G. Xu. 2012. Lipolysis response to endoplasmic reticulum stress in adipose cells. The Journal of Biological Chemistry 287: 6240–6249. doi:10.1074/jbc.M111.299115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Despres, J.P., B.S. Fong, P. Julien, J. Jimenez, and A. Angel. 1987. Regional variation in HDL metabolism in human fat cells: Effect of cell size. The American Journal of Physiology 252: E654–E659.

    CAS  PubMed  Google Scholar 

  • Ding, Y., Y. Wu, R. Zeng, and K. Liao. 2012. Proteomic profiling of lipid droplet-associated proteins in primary adipocytes of normal and obese mouse. Acta Biochimica et Biophysica Sinica 44: 394–406. doi:10.1093/abbs/gms008.

    Article  CAS  PubMed  Google Scholar 

  • Drolet, R., C. Richard, A.D. Sniderman, J. Mailloux, M. Fortier, C. Huot, C. Rhéaume, and A. Tchernof. 2008. Hypertrophy and hyperplasia of abdominal adipose tissues in women. International Journal of Obesity 2005(32): 283–291. doi:10.1038/sj.ijo.0803708.

    Article  Google Scholar 

  • Drolet, R., C. Bélanger, M. Fortier, C. Huot, J. Mailloux, D. Légaré, and A. Tchernof. 2009. Fat depot-specific impact of visceral obesity on adipocyte adiponectin release in women. Obesity (Silver Spring, Md.) 17: 424–430. doi:10.1038/oby.2008.555.

    Article  CAS  Google Scholar 

  • Eguchi, A., and A.E. Feldstein. 2013. Lysosomal Cathepsin D contributes to cell death during adipocyte hypertrophy. Adipocytes 2: 170–175. doi:10.4161/adip.24144.

    Article  Google Scholar 

  • Engfeldt, P., and P. Arner. 1988. Lipolysis in human adipocytes, effects of cell size, age and of regional differences. Hormone and Metabolic Research Supplement Series 19: 26–29.

    CAS  PubMed  Google Scholar 

  • Fajas, L., J.C. Fruchart, and J. Auwerx. 1998. Transcriptional control of adipogenesis. Current Opinion in Cell Biology 10: 165–173.

    Article  CAS  PubMed  Google Scholar 

  • Faust, I.M., P.R. Johnson, J.S. Stern, and J. Hirsch. 1978. Diet-induced adipocyte number increase in adult rats: A new model of obesity. The American Journal of Physiology 235: E279–E286.

    CAS  PubMed  Google Scholar 

  • Fei, W., G. Shui, Y. Zhang, N. Krahmer, C. Ferguson, T.S. Kapterian, R.C. Lin, I.W. Dawes, A.J. Brown, P. Li, X. Huang, R.G. Parton, M.R. Wenk, T.C. Walther, and H. Yang. 2011. A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLoS Genetics 7: e1002201. doi:10.1371/journal.pgen.1002201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer, B., T. Schöttl, C. Schempp, T. Fromme, H. Hauner, M. Klingenspor, and T. Skurk. 2015. Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes. American Journal of Physiology. Endocrinology and Metabolism 309: E380–E387. doi:10.1152/ajpendo.00524.2014.

    Article  CAS  PubMed  Google Scholar 

  • Fischer-Posovszky, P., H. Tornqvist, K.-M. Debatin, and M. Wabitsch. 2004. Inhibition of death-receptor mediated apoptosis in human adipocytes by the insulin-like growth factor I (IGF-I)/IGF-I receptor autocrine circuit. Endocrinology 145: 1849–1859. doi:10.1210/en.2003-0985.

    Article  CAS  PubMed  Google Scholar 

  • Fischer-Posovszky, P., D. Tews, S. Horenburg, K.-M. Debatin, and M. Wabitsch. 2012. Differential function of Akt1 and Akt2 in human adipocytes. Molecular and Cellular Endocrinology 358: 135–143. doi:10.1016/j.mce.2012.03.018.

    Article  CAS  PubMed  Google Scholar 

  • Fu, M., M. Rao, T. Bouras, C. Wang, K. Wu, X. Zhang, Z. Li, T.-P. Yao, and R.G. Pestell. 2005. Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment. The Journal of Biological Chemistry 280: 16934–16941. doi:10.1074/jbc.M500403200.

    Article  CAS  PubMed  Google Scholar 

  • Fukumura, D., A. Ushiyama, D.G. Duda, L. Xu, J. Tam, V. Krishna, K. Chatterjee, I. Garkavtsev, and R.K. Jain. 2003. Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circulation Research 93: e88–e97. doi:10.1161/01.RES.0000099243.20096.FA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funai, K., I.J. Lodhi, L.D. Spears, L. Yin, H. Song, S. Klein, and C.F. Semenkovich. 2016. Skeletal muscle phospholipid metabolism regulates insulin sensitivity and contractile function. Diabetes 65: 358–370. doi:10.2337/db15-0659.

    Article  CAS  PubMed  Google Scholar 

  • Garaulet, M., F. Pérez-Llamas, M. Pérez-Ayala, P. Martínez, F.S. de Medina, F.J. Tebar, and S. Zamora. 2001. Site-specific differences in the fatty acid composition of abdominal adipose tissue in an obese population from a Mediterranean area: Relation with dietary fatty acids, plasma lipid profile, serum insulin, and central obesity. The American Journal of Clinical Nutrition 74: 585–591.

    CAS  PubMed  Google Scholar 

  • Garaulet, M., J.J. Hernandez-Morante, J. Lujan, F.J. Tebar, and S. Zamora. 2006. Relationship between fat cell size and number and fatty acid composition in adipose tissue from different fat depots in overweight/obese humans. International Journal of Obesity 2005(30): 899–905. doi:10.1038/sj.ijo.0803219.

    Article  CAS  Google Scholar 

  • Giordano, A., I. Murano, E. Mondini, J. Perugini, A. Smorlesi, I. Severi, R. Barazzoni, P.E. Scherer, and S. Cinti. 2013. Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. Journal of Lipid Research 54: 2423–2436. doi:10.1194/jlr.M038638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong, J., Z. Sun, and P. Li. 2009. CIDE proteins and metabolic disorders. Current Opinion in Lipidology 20: 121–126. doi:10.1097/MOL.0b013e328328d0bb.

    Article  CAS  PubMed  Google Scholar 

  • Gong, J., Z. Sun, L. Wu, W. Xu, N. Schieber, D. Xu, G. Shui, H. Yang, R.G. Parton, and P. Li. 2011. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. The Journal of Cell Biology 195: 953–963. doi:10.1083/jcb.201104142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granneman, J.G., H.-P.H. Moore, R.L. Granneman, A.S. Greenberg, M.S. Obin, and Z. Zhu. 2007. Analysis of lipolytic protein trafficking and interactions in adipocytes. The Journal of Biological Chemistry 282: 5726–5735. doi:10.1074/jbc.M610580200.

    Article  CAS  PubMed  Google Scholar 

  • Granneman, J.G., H.-P.H. Moore, R. Krishnamoorthy, and M. Rathod. 2009. Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). The Journal of Biological Chemistry 284: 34538–34544. doi:10.1074/jbc.M109.068478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granneman, J.G., H.-P.H. Moore, E.P. Mottillo, Z. Zhu, and L. Zhou. 2011. Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase. The Journal of Biological Chemistry 286: 5126–5135. doi:10.1074/jbc.M110.180711.

    Article  CAS  PubMed  Google Scholar 

  • Gregor, M.F., and G.S. Hotamisligil. 2007. Thematic review series: Adipocyte biology. Adipocyte stress: The endoplasmic reticulum and metabolic disease. Journal of Lipid Research 48: 1905–1914. doi:10.1194/jlr.R700007-JLR200.

    Article  CAS  PubMed  Google Scholar 

  • Guicciardi, M.E., and G.J. Gores. 2009. Life and death by death receptors. FASEB Journal 23: 1625–1637. doi:10.1096/fj.08-111005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, L., X. Li, and Q.-Q. Tang. 2015. Transcriptional regulation of adipocyte differentiation: A central role for CCAAT/enhancer-binding protein (C/EBP) β. The Journal of Biological Chemistry 290: 755–761. doi:10.1074/jbc.R114.619957.

    Article  CAS  PubMed  Google Scholar 

  • Haemmerle, G., A. Lass, R. Zimmermann, G. Gorkiewicz, C. Meyer, J. Rozman, G. Heldmaier, R. Maier, C. Theussl, S. Eder, D. Kratky, E.F. Wagner, M. Klingenspor, G. Hoefler, and R. Zechner. 2006. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312: 734–737. doi:10.1126/science.1123965.

    Article  CAS  PubMed  Google Scholar 

  • Hamza, M.S., S. Pott, V.B. Vega, J.S. Thomsen, G.S. Kandhadayar, P.W.P. Ng, K.P. Chiu, S. Pettersson, C.L. Wei, Y. Ruan, and E.T. Liu. 2009. De-novo identification of PPARgamma/RXR binding sites and direct targets during adipogenesis. PLoS One 4: e4907. doi:10.1371/journal.pone.0004907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashimoto, T., H. Segawa, M. Okuno, H. Kano, H. Hamaguchi, T. Haraguchi, Y. Hiraoka, S. Hasui, T. Yamaguchi, F. Hirose, and T. Osumi. 2012. Active involvement of micro-lipid droplets and lipid-droplet-associated proteins in hormone-stimulated lipolysis in adipocytes. Journal of Cell Science 125: 6127–6136. doi:10.1242/jcs.113084.

    Article  CAS  PubMed  Google Scholar 

  • Heckmann, B.L., X. Zhang, X. Xie, and J. Liu. 2013. The G0/G1 switch gene 2 (G0S2): Regulating metabolism and beyond. Biochimica et Biophysica Acta 1831: 276–281. doi:10.1016/j.bbalip.2012.09.016.

    Article  CAS  PubMed  Google Scholar 

  • Heckmann, B.L., X. Zhang, X. Xie, A. Saarinen, X. Lu, X. Yang, and J. Liu. 2014. Defective adipose lipolysis and altered global energy metabolism in mice with adipose overexpression of the lipolytic inhibitor G0/G1 switch gene 2 (G0S2). The Journal of Biological Chemistry 289: 1905–1916. doi:10.1074/jbc.M113.522011.

    Article  CAS  PubMed  Google Scholar 

  • Heid, H., S. Rickelt, R. Zimbelmann, S. Winter, H. Schumacher, Y. Dörflinger, C. Kuhn, and W.W. Franke. 2014. On the formation of lipid droplets in human adipocytes: The organization of the perilipin-vimentin cortex. PLoS One 9: e90386. doi:10.1371/journal.pone.0090386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heilbronn, L., S.R. Smith, and E. Ravussin. 2004. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. International Journal of Obesity and Related Disorders 28(Suppl 4): S12–S21. doi:10.1038/sj.ijo.0802853.

    Article  CAS  Google Scholar 

  • Herman, M.A., O.D. Peroni, J. Villoria, M.R. Schön, N.A. Abumrad, M. Blüher, S. Klein, and B.B. Kahn. 2012. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484: 333–338. doi:10.1038/nature10986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herms, A., M. Bosch, N. Ariotti, B.J.N. Reddy, A. Fajardo, A. Fernández-Vidal, A. Alvarez-Guaita, M.A. Fernández-Rojo, C. Rentero, F. Tebar, C. Enrich, M.-I. Geli, R.G. Parton, S.P. Gross, and A. Pol. 2013. Cell-to-cell heterogeneity in lipid droplets suggests a mechanism to reduce lipotoxicity. Current Biology: CB 23: 1489–1496. doi:10.1016/j.cub.2013.06.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton, J.D., I. Shimomura, S. Ikemoto, Y. Bashmakov, and R.E. Hammer. 2003. Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver. The Journal of Biological Chemistry 278: 36652–36660. doi:10.1074/jbc.M306540200.

    Article  CAS  PubMed  Google Scholar 

  • Hotamisligil, G.S. 2010. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140: 900–917. doi:10.1016/j.cell.2010.02.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hummasti, S., and G.S. Hotamisligil. 2010. Endoplasmic reticulum stress and inflammation in obesity and diabetes. Circulation Research 107: 579–591. doi:10.1161/CIRCRESAHA.110.225698.

    Article  CAS  PubMed  Google Scholar 

  • Hurtado del Pozo, C., G. Vesperinas-García, M.-Á. Rubio, R. Corripio-Sánchez, A.J. Torres-García, M.-J. Obregon, and R.M. Calvo. 2011. ChREBP expression in the liver, adipose tissue and differentiated preadipocytes in human obesity. Biochimica et Biophysica Acta 1811: 1194–1200. doi:10.1016/j.bbalip.2011.07.016.

    Article  CAS  PubMed  Google Scholar 

  • Inohara, N., T. Koseki, S. Chen, X. Wu, and G. Núñez. 1998. CIDE, a novel family of cell death activators with homology to the 45 kDa subunit of the DNA fragmentation factor. The EMBO Journal 17: 2526–2533. doi:10.1093/emboj/17.9.2526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, M., M. Nagasawa, N. Omae, M. Tsunoda, J. Ishiyama, T. Ide, Y. Akasaka, and K. Murakami. 2013. A novel JNK2/SREBP-1c pathway involved in insulin-induced fatty acid synthesis in human adipocytes. Journal of Lipid Research 54: 1531–1540. doi:10.1194/jlr.M031591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamura, Y., M. Mori, K. Nakashima, T. Mikami, K. Murayama, S. Arai, and T. Miyazaki. 2012. Apoptosis inhibitor of macrophage (AIM) diminishes lipid droplet-coating proteins leading to lipolysis in adipocytes. Biochemical and Biophysical Research Communications 422: 476–481. doi:10.1016/j.bbrc.2012.05.018.

    Article  CAS  PubMed  Google Scholar 

  • Jambunathan, S., J. Yin, W. Khan, Y. Tamori, and V. Puri. 2011. FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation. PLoS One 6: e28614. doi:10.1371/journal.pone.0028614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffery, E., C.D. Church, B. Holtrup, L. Colman, and M.S. Rodeheffer. 2015. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nature Cell Biology 17: 376–385. doi:10.1038/ncb3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, Q., F. Zhang, T. Yan, Z. Liu, C. Wang, X. Ge, and Q. Zhai. 2010. C/EBPalpha regulates SIRT1 expression during adipogenesis. Cell Research 20: 470–479. doi:10.1038/cr.2010.24.

    Article  CAS  PubMed  Google Scholar 

  • Jin, D., J. Sun, J. Huang, Y. He, A. Yu, X. Yu, and Z. Yang. 2014. TNF-α reduces g0s2 expression and stimulates lipolysis through PPAR-γ inhibition in 3T3-L1 adipocytes. Cytokine 69: 196–205. doi:10.1016/j.cyto.2014.06.005.

    Article  CAS  PubMed  Google Scholar 

  • Joe, A.W.B., L. Yi, Y. Even, A.W. Vogl, and F.M.V. Rossi. 2009. Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cells 27: 2563–2570. doi:10.1002/stem.190.

    Article  CAS  PubMed  Google Scholar 

  • Khor, V.K., W.-J. Shen, and F.B. Kraemer. 2013. Lipid droplet metabolism. Current Opinion in Clinical Nutrition and Metabolic Care 16: 632–637. doi:10.1097/MCO.0b013e3283651106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J.B., and B.M. Spiegelman. 1996. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes & Development 10: 1096–1107.

    Article  CAS  Google Scholar 

  • Kim, J.B., H.M. Wright, M. Wright, and B.M. Spiegelman. 1998. ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand. Proceedings of the National Academy of Sciences of the United States of America 95: 4333–4337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koutsari, C., and M.D. Jensen. 2006. Thematic review series: Patient-oriented research. Free fatty acid metabolism in human obesity. Journal of Lipid Research 47: 1643–1650. doi:10.1194/jlr.R600011-JLR200.

    Article  CAS  PubMed  Google Scholar 

  • Koutsari, C., A.H. Ali, M.S. Mundi, and M.D. Jensen. 2011. Storage of circulating free fatty acid in adipose tissue of postabsorptive humans: Quantitative measures and implications for body fat distribution. Diabetes 60: 2032–2040. doi:10.2337/db11-0154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krahmer, N., Y. Guo, F. Wilfling, M. Hilger, S. Lingrell, K. Heger, H.W. Newman, M. Schmidt-Supprian, D.E. Vance, M. Mann, R.V. Farese, and T.C. Walther. 2011. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:Phosphocholine cytidylyltransferase. Cell Metabolism 14: 504–515. doi:10.1016/j.cmet.2011.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krintel, C., P. Osmark, M.R. Larsen, S. Resjö, D.T. Logan, and C. Holm. 2008. Ser649 and Ser650 are the major determinants of protein kinase A-mediated activation of human hormone-sensitive lipase against lipid substrates. PLoS One 3: e3756. doi:10.1371/journal.pone.0003756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krintel, C., M. Mörgelin, D.T. Logan, and C. Holm. 2009. Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area. The FEBS Journal 276: 4752–4762. doi:10.1111/j.1742-4658.2009.07172.x.

    Article  CAS  PubMed  Google Scholar 

  • Kuramoto, K., T. Okamura, T. Yamaguchi, T.Y. Nakamura, S. Wakabayashi, H. Morinaga, M. Nomura, T. Yanase, K. Otsu, N. Usuda, S. Matsumura, K. Inoue, T. Fushiki, Y. Kojima, T. Hashimoto, F. Sakai, F. Hirose, and T. Osumi. 2012. Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation. The Journal of Biological Chemistry 287: 23852–23863. doi:10.1074/jbc.M111.328708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laforest, S., J. Labrecque, A. Michaud, K. Cianflone, and A. Tchernof. 2015. Adipocyte size as a determinant of metabolic disease and adipose tissue dysfunction. Critical Reviews in Clinical Laboratory Sciences 52: 301–313. doi:10.3109/10408363.2015.1041582.

    Article  CAS  PubMed  Google Scholar 

  • Lass, A., R. Zimmermann, G. Haemmerle, M. Riederer, G. Schoiswohl, M. Schweiger, P. Kienesberger, J.G. Strauss, G. Gorkiewicz, and R. Zechner. 2006. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman syndrome. Cell Metabolism 3: 309–319. doi:10.1016/j.cmet.2006.03.005.

    Article  CAS  PubMed  Google Scholar 

  • Lauber, K., E. Bohn, S.M. Kröber, Y. Xiao, S.G. Blumenthal, R.K. Lindemann, P. Marini, C. Wiedig, A. Zobywalski, S. Baksh, Y. Xu, I.B. Autenrieth, K. Schulze-Osthoff, C. Belka, G. Stuhler, and S. Wesselborg. 2003. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113: 717–730.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.M., T. Jang, and H.H. Park. 2013. Molecular basis for homo-dimerization of the CIDE domain revealed by the crystal structure of the CIDE-N domain of FSP27. Biochemical and Biophysical Research Communications 439: 564–569. doi:10.1016/j.bbrc.2013.09.018.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y.-H., S.-N. Kim, H.-J. Kwon, K.R. Maddipati, and J.G. Granneman. 2016. Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 310: R55–R65. doi:10.1152/ajpregu.00355.2015.

    Article  PubMed  Google Scholar 

  • Lillioja, S., J. Foley, C. Bogardus, D. Mott, and B.V. Howard. 1986. Free fatty acid metabolism and obesity in man: In vivo in vitro comparisons. Metabolism 35: 505–514.

    Article  CAS  PubMed  Google Scholar 

  • Listenberger, L.L., A.G. Ostermeyer-Fay, E.B. Goldberg, W.J. Brown, and D.A. Brown. 2007. Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. Journal of Lipid Research 48: 2751–2761. doi:10.1194/jlr.M700359-JLR200.

    Article  CAS  PubMed  Google Scholar 

  • Liu, F.T., D.K. Hsu, R.I. Zuberi, I. Kuwabara, E.Y. Chi, and W.R. Henderson. 1995. Expression ad function of galectin-3, a beta-galactoside-binding lectin, in human monocytes and macrophages. The American Journal of Pathology 147: 1016–1028.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, R., D.A. Pulliam, Y. Liu, and A.B. Salmon. 2015. Dynamic differences in oxidative stress and the regulation of metabolism with age in visceral versus subcutaneous adipose. Redox Biology 6: 401–408. doi:10.1016/j.redox.2015.07.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Londos, C., C. Sztalryd, J.T. Tansey, and A.R. Kimmel. 2005. Role of PAT proteins in lipid metabolism. Biochimie 87: 45–49. doi:10.1016/j.biochi.2004.12.010.

    Article  CAS  PubMed  Google Scholar 

  • Love, J.D., T. Suzuki, D.B. Robinson, C.M. Harris, J.E. Johnson, P.J. Mohler, W.G. Jerome, and L.L. Swift. 2015. Microsomal triglyceride transfer protein (MTP) associates with cytosolic lipid droplets in 3T3-L1 adipocytes. PLoS One 10: e0135598. doi:10.1371/journal.pone.0135598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu, X., X. Yang, and J. Liu. 2010. Differential control of ATGL-mediated lipid droplet degradation by CGI-58 and G0S2. Cell Cycle (Georgetown, Texas) 9: 2719–2725. doi:10.4161/cc.9.14.12181.

    CAS  Google Scholar 

  • Lumeng, C.N., J.B. DelProposto, D.J. Westcott, and A.R. Saltiel. 2008. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57: 3239–3246. doi:10.2337/db08-0872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundgren, M., M. Svensson, S. Lindmark, F. Renström, T. Ruge, and J.W. Eriksson. 2007. Fat cell enlargement is an independent marker of insulin resistance and “hyperleptinaemia”. Diabetologia 50: 625–633. doi:10.1007/s00125-006-0572-1.

    Article  CAS  PubMed  Google Scholar 

  • Martin, S., and R.G. Parton. 2006. Lipid droplets: A unified view of a dynamic organelle. Nature Reviews. Molecular Cell Biology 7: 373–378. doi:10.1038/nrm1912.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2008. Characterization of Rab18, a lipid droplet-associated small GTPase. Methods in Enzymology 438: 109–129. doi:10.1016/S0076-6879(07)38008-7.

    Article  CAS  PubMed  Google Scholar 

  • Mason, R.R., R.C.R. Meex, R. Lee-Young, B.J. Canny, and M.J. Watt. 2012. Phosphorylation of adipose triglyceride lipase Ser(404) is not related to 5′-AMPK activation during moderate-intensity exercise in humans. American Journal of Physiology. Endocrinology and Metabolism 303: E534–E541. doi:10.1152/ajpendo.00082.2012.

    Article  CAS  PubMed  Google Scholar 

  • Matsubara, Y., K. Kano, D. Kondo, H. Mugishima, and T. Matsumoto. 2009. Differences in adipocytokines and fatty acid composition between two adipocyte fractions of small and large cells in high-fat diet-induced obese mice. Annals of Nutrition & Metabolism 54: 258–267. doi:10.1159/000229506.

    Article  CAS  Google Scholar 

  • Maumus, M., C. Sengenès, P. Decaunes, A. Zakaroff-Girard, V. Bourlier, M. Lafontan, J. Galitzky, and A. Bouloumié. 2008. Evidence of in situ proliferation of adult adipose tissue-derived progenitor cells: Influence of fat mass microenvironment and growth. The Journal of Clinical Endocrinology and Metabolism 93: 4098–4106. doi:10.1210/jc.2008-0044.

    Article  CAS  PubMed  Google Scholar 

  • Maya-Monteiro, C.M., P.E. Almeida, H. D’Avila, A.S. Martins, A.P. Rezende, H. Castro-Faria-Neto, and P.T. Bozza. 2008. Leptin induces macrophage lipid body formation by a phosphatidylinositol 3-kinase- and mammalian target of rapamycin-dependent mechanism. The Journal of Biological Chemistry 283: 2203–2210. doi:10.1074/jbc.M706706200.

    Article  CAS  PubMed  Google Scholar 

  • McFie, P.J., S.L. Banman, S. Kary, and S.J. Stone. 2011. Murine diacylglycerol acyltransferase-2 (DGAT2) can catalyze triacylglycerol synthesis and promote lipid droplet formation independent of its localization to the endoplasmic reticulum. The Journal of Biological Chemistry 286: 28235–28246. doi:10.1074/jbc.M111.256008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina-Gomez, G., S. Gray, and A. Vidal-Puig. 2007. Adipogenesis and lipotoxicity: Role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). Public Health Nutrition 10: 1132–1137. doi:10.1017/S1368980007000614.

    Article  PubMed  Google Scholar 

  • Michaud, A., M.M. Boulet, A. Veilleux, S. Noël, G. Paris, and A. Tchernof. 2014. Abdominal subcutaneous and omental adipocyte morphology and its relation to gene expression, lipolysis and adipocytokine levels in women. Metabolism 63: 372–381. doi:10.1016/j.metabol.2013.11.007.

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi, H., S.C. Souza, H.-H. Zhang, K.J. Strissel, M.A. Christoffolete, J. Kovsan, A. Rudich, F.B. Kraemer, A.C. Bianco, M.S. Obin, and A.S. Greenberg. 2006. Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. The Journal of Biological Chemistry 281: 15837–15844. doi:10.1074/jbc.M601097200.

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi, H., J.W. Perfield, S.C. Souza, W.-J. Shen, H.-H. Zhang, Z.S. Stancheva, F.B. Kraemer, M.S. Obin, and A.S. Greenberg. 2007. Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. The Journal of Biological Chemistry 282: 996–1002. doi:10.1074/jbc.M605770200.

    Article  CAS  PubMed  Google Scholar 

  • Moore, H.-P.H., R.B. Silver, E.P. Mottillo, D.A. Bernlohr, and J.G. Granneman. 2005. Perilipin targets a novel pool of lipid droplets for lipolytic attack by hormone-sensitive lipase. The Journal of Biological Chemistry 280: 43109–43120. doi:10.1074/jbc.M506336200.

    Article  CAS  PubMed  Google Scholar 

  • Murano, I., G. Barbatelli, V. Parisani, C. Latini, G. Muzzonigro, M. Castellucci, and S. Cinti. 2008. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. Journal of Lipid Research 49: 1562–1568. doi:10.1194/jlr.M800019-JLR200.

    Article  CAS  PubMed  Google Scholar 

  • Murano, I., J.M. Rutkowski, Q.A. Wang, Y.-R. Cho, P.E. Scherer, and S. Cinti. 2013. Time course of histomorphological changes in adipose tissue upon acute lipoatrophy. Nutrition, Metabolism and Cardiovascular Diseases 23: 723–731. doi:10.1016/j.numecd.2012.03.005.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, S., S. Martin, and R.G. Parton. 2009. Lipid droplet-organelle interactions; sharing the fats. Biochimica et Biophysica Acta 1791: 441–447. doi:10.1016/j.bbalip.2008.07.004.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2010. Quantitative analysis of lipid droplet fusion: Inefficient steady state fusion but rapid stimulation by chemical fusogens. PLoS One 5: e15030. doi:10.1371/journal.pone.0015030.

  • Nagy, H.M., M. Paar, C. Heier, T. Moustafa, P. Hofer, G. Haemmerle, A. Lass, R. Zechner, M. Oberer, and R. Zimmermann. 2014. Adipose triglyceride lipase activity is inhibited by long-chain acyl-coenzyme A. Biochimica et Biophysica Acta 1841: 588–594. doi:10.1016/j.bbalip.2014.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namgaladze, D., R.G. Snodgrass, C. Angioni, N. Grossmann, N. Dehne, G. Geisslinger, and B. Brüne. 2015. AMP-activated protein kinase suppresses arachidonate 15-lipoxygenase expression in interleukin 4-polarized human macrophages. The Journal of Biological Chemistry 290: 24484–24494. doi:10.1074/jbc.M115.678243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neels, J.G., and J.M. Olefsky. 2006. Inflamed fat: What starts the fire? The Journal of Clinical Investigation 116: 33–35. doi:10.1172/JCI27280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishino, N., Y. Tamori, S. Tateya, T. Kawaguchi, T. Shibakusa, W. Mizunoya, K. Inoue, R. Kitazawa, S. Kitazawa, Y. Matsuki, R. Hiramatsu, S. Masubuchi, A. Omachi, K. Kimura, M. Saito, T. Amo, S. Ohta, T. Yamaguchi, T. Osumi, J. Cheng, T. Fujimoto, H. Nakao, K. Nakao, A. Aiba, H. Okamura, T. Fushiki, and M. Kasuga. 2008. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. The Journal of Clinical Investigation 118: 2808–2821. doi:10.1172/JCI34090.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nordström, E.A., M. Rydén, E.C. Backlund, I. Dahlman, M. Kaaman, L. Blomqvist, B. Cannon, J. Nedergaard, and P. Arner. 2005. A human-specific role of cell death-inducing DFFA (DNA fragmentation factor-alpha)-like effector A (CIDEA) in adipocyte lipolysis and obesity. Diabetes 54: 1726–1734.

    Article  PubMed  Google Scholar 

  • Olofsson, S.-O., P. Boström, L. Andersson, M. Rutberg, M. Levin, J. Perman, and J. Borén. 2008. Triglyceride containing lipid droplets and lipid droplet-associated proteins. Current Opinion in Lipidology 19: 441–447. doi:10.1097/MOL.0b013e32830dd09b.

    Article  CAS  PubMed  Google Scholar 

  • Opie, L.H., and P.G. Walfish. 1963. Plasma free fatty acid concentrations in obesity. The New England Journal of Medicine 268: 757–760. doi:10.1056/NEJM196304042681404.

    Article  CAS  PubMed  Google Scholar 

  • Ozcan, U., Q. Cao, E. Yilmaz, A.-H. Lee, N.N. Iwakoshi, E. Ozdelen, G. Tuncman, C. Görgün, L.H. Glimcher, and G.S. Hotamisligil. 2004. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306: 457–461. doi:10.1126/science.1103160.

    Article  PubMed  CAS  Google Scholar 

  • Paar, M., C. Jüngst, N.A. Steiner, C. Magnes, F. Sinner, D. Kolb, A. Lass, R. Zimmermann, A. Zumbusch, S.D. Kohlwein, and H. Wolinski. 2012. Remodeling of lipid droplets during lipolysis and growth in adipocytes. The Journal of Biological Chemistry 287: 11164–11173. doi:10.1074/jbc.M111.316794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang, W., Y. Wang, N. Wei, R. Xu, Y. Xiong, P. Wang, Q. Shen, and G. Yang. 2013. Sirt1 inhibits akt2-mediated porcine adipogenesis potentially by direct protein-protein interaction. PLoS One 8: e71576. doi:10.1371/journal.pone.0071576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne, V.A., W.-S. Au, S.L. Gray, E.D. Nora, S.M. Rahman, R. Sanders, D. Hadaschik, J.E. Friedman, S. O’Rahilly, and J.J. Rochford. 2007. Sequential regulation of diacylglycerol acyltransferase 2 expression by CAAT/enhancer-binding protein beta (C/EBPbeta) and C/EBPalpha during adipogenesis. The Journal of Biological Chemistry 282: 21005–21014. doi:10.1074/jbc.M702871200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne, V.A., W.-S. Au, C.E. Lowe, S.M. Rahman, J.E. Friedman, S. O’Rahilly, and J.J. Rochford. 2010. C/EBP transcription factors regulate SREBP1c gene expression during adipogenesis. The Biochemical Journal 425: 215–223. doi:10.1042/BJ20091112.

    Article  CAS  Google Scholar 

  • Penno, A., G. Hackenbroich, and C. Thiele. 2013. Phospholipids and lipid droplets. Biochimica et Biophysica Acta 1831: 589–594. doi:10.1016/j.bbalip.2012.12.001.

    Article  CAS  PubMed  Google Scholar 

  • Peter, C., M. Waibel, C.G. Radu, L.V. Yang, O.N. Witte, K. Schulze-Osthoff, S. Wesselborg, and K. Lauber. 2008. Migration to apoptotic “find-me” signals is mediated via the phagocyte receptor G2A. The Journal of Biological Chemistry 283: 5296–5305. doi:10.1074/jbc.M706586200.

    Article  CAS  PubMed  Google Scholar 

  • Picard, F., M. Kurtev, N. Chung, A. Topark-Ngarm, T. Senawong, R. Machado De Oliveira, M. Leid, M.W. McBurney, and L. Guarente. 2004. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429: 771–776. doi:10.1038/nature02583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pompei, A., E. Toniato, P. Innocenti, I. D Alimonte, C. Cellini, D. Mattoscio, R. Cotellese, D. Bosco, R. Ciccarelli, V. Dadorante, N. D Orazio, S. Martinotti, and I. Robuffo. 2012. Cyanidin reduces preadipocyte differentiation and relative ChREBP expression. Journal of Biological Regulators and Homeostatic Agents 26: 253–264.

    CAS  PubMed  Google Scholar 

  • Pulido, M.R., A. Diaz-Ruiz, Y. Jiménez-Gómez, S. Garcia-Navarro, F. Gracia-Navarro, F. Tinahones, J. López-Miranda, G. Frühbeck, R. Vázquez-Martínez, and M.M. Malagón. 2011. Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One 6: e22931. doi:10.1371/journal.pone.0022931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puri, V., S. Konda, S. Ranjit, M. Aouadi, A. Chawla, M. Chouinard, A. Chakladar, and M.P. Czech. 2007. Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. The Journal of Biological Chemistry 282: 34213–34218. doi:10.1074/jbc.M707404200.

    Article  CAS  PubMed  Google Scholar 

  • Rajjo, T.I., D.A. Harteneck, and M.D. Jensen. 2014. Direct free fatty acid storage in different sized adipocytes from the same depot. Obesity (Silver Spring, Md.) 22: 1275–1279. doi:10.1002/oby.20673.

    Article  CAS  Google Scholar 

  • Ranjit, S., E. Boutet, P. Gandhi, M. Prot, Y. Tamori, A. Chawla, A.S. Greenberg, V. Puri, and M.P. Czech. 2011. Regulation of fat specific protein 27 by isoproterenol and TNF-α to control lipolysis in murine adipocytes. Journal of Lipid Research 52: 221–236. doi:10.1194/jlr.M008771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray, H., C. Pinteur, V. Frering, M. Beylot, and V. Large. 2009. Depot-specific differences in perilipin and hormone-sensitive lipase expression in lean and obese. Lipids in Health and Disease 8: 58. doi:10.1186/1476-511X-8-58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren, G., P. Eskandari, S. Wang, and C.M. Smas. 2016. Expression, regulation and functional assessment of the 80 amino acid Small Adipocyte Factor 1 (Smaf1) protein in adipocytes. Archives of Biochemistry and Biophysics 590: 27–36. doi:10.1016/j.abb.2015.09.019.

    Article  CAS  PubMed  Google Scholar 

  • Rizzatti, V., F. Boschi, M. Pedrotti, E. Zoico, A. Sbarbati, and M. Zamboni. 2013. Lipid droplets characterization in adipocyte differentiated 3T3-L1 cells: Size and optical density distribution. European Journal of Histochemistry 57: e24. doi:10.4081/ejh.2013.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodeheffer, M.S., K. Birsoy, and J.M. Friedman. 2008. Identification of white adipocyte progenitor cells in vivo. Cell 135: 240–249. doi:10.1016/j.cell.2008.09.036.

    Article  CAS  PubMed  Google Scholar 

  • Rosen, E.D., and O.A. MacDougald. 2006. Adipocyte differentiation from the inside out. Nature Reviews. Molecular Cell Biology 7: 885–896. doi:10.1038/nrm2066.

    Article  CAS  PubMed  Google Scholar 

  • Rosen, E.D., and B.M. Spiegelman. 2006. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444: 847–853. doi:10.1038/nature05483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossmeisl, M., P. Flachs, P. Brauner, J. Sponarova, O. Matejkova, T. Prazak, J. Ruzickova, K. Bardova, O. Kuda, and J. Kopecky. 2004. Role of energy charge and AMP-activated protein kinase in adipocytes in the control of body fat stores. International Journal of Obesity and Related Metabolic Disorders 28(Suppl 4): S38–S44. doi:10.1038/sj.ijo.0802855.

    Article  CAS  PubMed  Google Scholar 

  • Sahu-Osen, A., G. Montero-Moran, M. Schittmayer, K. Fritz, A. Dinh, Y.-F. Chang, D. McMahon, A. Boeszoermenyi, I. Cornaciu, D. Russell, M. Oberer, G.M. Carman, R. Birner-Gruenberger, and D.L. Brasaemle. 2015. CGI-58/ABHD5 is phosphorylated on Ser239 by protein kinase A: Control of subcellular localization. Journal of Lipid Research 56: 109–121. doi:10.1194/jlr.M055004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano, H., D.K. Hsu, L. Yu, J.R. Apgar, I. Kuwabara, T. Yamanaka, M. Hirashima, and F.T. Liu. 2000. Human galectin-3 is a novel chemoattractant for monocytes and macrophages. Journal of Immunology 1950(165): 2156–2164.

    Article  Google Scholar 

  • Sano, H., D.K. Hsu, J.R. Apgar, L. Yu, B.B. Sharma, I. Kuwabara, S. Izui, and F.-T. Liu. 2003. Critical role of galectin-3 in phagocytosis by macrophages. The Journal of Clinical Investigation 112: 389–397. doi:10.1172/JCI17592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoonjans, K., J. Peinado-Onsurbe, A.M. Lefebvre, R.A. Heyman, M. Briggs, S. Deeb, B. Staels, and J. Auwerx. 1996. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. The EMBO Journal 15: 5336–5348.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoonjans, K., L. Gelman, C. Haby, M. Briggs, and J. Auwerx. 2000. Induction of LPL gene expression by sterols is mediated by a sterol regulatory element and is independent of the presence of multiple E boxes. Journal of Molecular Biology 304: 323–334. doi:10.1006/jmbi.2000.4218.

    Article  CAS  PubMed  Google Scholar 

  • Schweiger, M., M. Paar, C. Eder, J. Brandis, E. Moser, G. Gorkiewicz, S. Grond, F.P.W. Radner, I. Cerk, I. Cornaciu, M. Oberer, S. Kersten, R. Zechner, R. Zimmermann, and A. Lass. 2012. G0/G1 switch gene-2 regulates human adipocyte lipolysis by affecting activity and localization of adipose triglyceride lipase. Journal of Lipid Research 53: 2307–2317. doi:10.1194/jlr.M027409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shadid, S., C. Koutsari, and M.D. Jensen. 2007. Direct free fatty acid uptake into human adipocytes in vivo: Relation to body fat distribution. Diabetes 56: 1369–1375. doi:10.2337/db06-1680.

    Article  CAS  PubMed  Google Scholar 

  • Shoham, N., P. Girshovitz, R. Katzengold, N.T. Shaked, D. Benayahu, and A. Gefen. 2014. Adipocyte stiffness increases with accumulation of lipid droplets. Biophysical Journal 106: 1421–1431. doi:10.1016/j.bpj.2014.01.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonsen, L., L.H. Enevoldsen, B. Stallknecht, and J. Bülow. 2008. Effects of local alpha2-adrenergic receptor blockade on adipose tissue lipolysis during prolonged systemic adrenaline infusion in normal man. Clinical Physiology and Functional Imaging 28: 125–131. doi:10.1111/j.1475-097X.2007.00781.x.

    Article  CAS  PubMed  Google Scholar 

  • Skopp, A., M. May, J. Janke, H. Kielstein, R. Wunder, R. Flade-Kuthe, A. Kuthe, J. Jordan, and S. Engeli. 2016. Regulation of G0/G1 switch gene 2 (G0S2) expression in human adipose tissue. Archives of Physiology and Biochemistry 122: 47–53. doi:10.3109/13813455.2015.1122066.

    Article  CAS  PubMed  Google Scholar 

  • Sohn, E.J., D.-B. Jung, J. Lee, S.W. Yoon, G.-H. Won, H.S. Ko, and S.-H. Kim. 2015. CCR4-NOT2 promotes the differentiation and lipogenesis of 3T3-L1 adipocytes via upregulation of PPARx03B3;, CEBPα and inhibition of P-GSK3α/β and β-catenin. Cellular Physiology and Biochemistry 37: 1881–1889. doi:10.1159/000438549.

    Article  CAS  PubMed  Google Scholar 

  • Soliman, G.A., H.A. Acosta-Jaquez, and D.C. Fingar. 2010. mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes. Lipids 45: 1089–1100. doi:10.1007/s11745-010-3488-y.

    Article  CAS  PubMed  Google Scholar 

  • Souza, S.C., L.M. de Vargas, M.T. Yamamoto, P. Lien, M.D. Franciosa, L.G. Moss, and A.S. Greenberg. 1998. Overexpression of perilipin A and B blocks the ability of tumor necrosis factor alpha to increase lipolysis in 3T3-L1 adipocytes. The Journal of Biological Chemistry 273: 24665–24669.

    Article  CAS  PubMed  Google Scholar 

  • Spalding, K.L., E. Arner, P.O. Westermark, S. Bernard, B.A. Buchholz, O. Bergmann, L. Blomqvist, J. Hoffstedt, E. Näslund, T. Britton, H. Concha, M. Hassan, M. Rydén, J. Frisén, and P. Arner. 2008. Dynamics of fat cell turnover in humans. Nature 453: 783–787. doi:10.1038/nature06902.

    Article  CAS  PubMed  Google Scholar 

  • Stienstra, R., L.A.B. Joosten, T. Koenen, B. van Tits, J.A. van Diepen, S.A.A. van den Berg, P.C.N. Rensen, P.J. Voshol, G. Fantuzzi, A. Hijmans, S. Kersten, M. Müller, W.B. van den Berg, N. van Rooijen, M. Wabitsch, B.-J. Kullberg, J.W.M. van der Meer, T. Kanneganti, C.J. Tack, and M.G. Netea. 2010. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metabolism 12: 593–605. doi:10.1016/j.cmet.2010.11.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strissel, K.J., Z. Stancheva, H. Miyoshi, J.W. Perfield, J. DeFuria, Z. Jick, A.S. Greenberg, and M.S. Obin. 2007. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56: 2910–2918. doi:10.2337/db07-0767.

    Article  CAS  PubMed  Google Scholar 

  • Su, C.-L., C. Sztalryd, J.A. Contreras, C. Holm, A.R. Kimmel, and C. Londos. 2003. Mutational analysis of the hormone-sensitive lipase translocation reaction in adipocytes. The Journal of Biological Chemistry 278: 43615–43619. doi:10.1074/jbc.M301809200.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Z., J. Gong, H. Wu, W. Xu, L. Wu, D. Xu, J. Gao, J.-W. Wu, H. Yang, M. Yang, and P. Li. 2013. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nature Communications 4: 1594. doi:10.1038/ncomms2581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sztalryd, C., G. Xu, H. Dorward, J.T. Tansey, J.A. Contreras, A.R. Kimmel, and C. Londos. 2003. Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. The Journal of Cell Biology 161: 1093–1103. doi:10.1083/jcb.200210169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, Y., A. Shinoda, N. Furuya, E. Harada, N. Arimura, I. Ichi, Y. Fujiwara, J. Inoue, and R. Sato. 2013. Perilipin-mediated lipid droplet formation in adipocytes promotes sterol regulatory element-binding protein-1 processing and triacylglyceride accumulation. PLoS One 8: e64605. doi:10.1371/journal.pone.0064605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, T., N. Yoshida, T. Kishimoto, and S. Akira. 1997. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. The EMBO Journal 16: 7432–7443. doi:10.1093/emboj/16.24.7432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, Q.Q., and M.D. Lane. 2012. Adipogenesis: From stem cell to adipocyte. Annual Review of Biochemistry 81: 715–736. doi:10.1146/annurev-biochem-052110-115718.

    Article  CAS  PubMed  Google Scholar 

  • Tsao, C.-H., M.-Y. Shiau, P.-H. Chuang, Y.-H. Chang, and J. Hwang. 2014. Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. Journal of Lipid Research 55: 385–397. doi:10.1194/jlr.M041392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tumova, J., M. Andel, and J. Trnka. 2016. Excess of free fatty acids as a cause of metabolic dysfunction in skeletal muscle. Physiological Research 65: 193–207.

    CAS  PubMed  Google Scholar 

  • Vandanmagsar, B., Y.-H. Youm, A. Ravussin, J.E. Galgani, K. Stadler, R.L. Mynatt, E. Ravussin, J.M. Stephens, and V.D. Dixit. 2011. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nature Medicine 17: 179–188. doi:10.1038/nm.2279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veilleux, A., M. Caron-Jobin, S. Noël, P.Y. Laberge, and A. Tchernof. 2011. Visceral adipocyte hypertrophy is associated with dyslipidemia independent of body composition and fat distribution in women. Diabetes 60: 1504–1511. doi:10.2337/db10-1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voshol, P.J., P.C.N. Rensen, K.W. van Dijk, J.A. Romijn, and L.M. Havekes. 2009. Effect of plasma triglyceride metabolism on lipid storage in adipose tissue: Studies using genetically engineered mouse models. Biochimica et Biophysica Acta 1791: 479–485. doi:10.1016/j.bbalip.2008.12.015.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., and R.H. Eckel. 2009. Lipoprotein lipase: From gene to obesity. American Journal of Physiology. Endocrinology and Metabolism 297: E271–E288. doi:10.1152/ajpendo.90920.2008.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., and C. Sztalryd. 2011. Oxidative tissue: Perilipin 5 links storage with the furnace. Trends in Endocrinology and Metabolism 22: 197–203. doi:10.1016/j.tem.2011.03.008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, S., K.G. Soni, M. Semache, S. Casavant, M. Fortier, L. Pan, and G.A. Mitchell. 2008. Lipolysis and the integrated physiology of lipid energy metabolism. Molecular Genetics and Metabolism 95: 117–126. doi:10.1016/j.ymgme.2008.06.012.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., L. Hu, K. Dalen, H. Dorward, A. Marcinkiewicz, D. Russell, D. Gong, C. Londos, T. Yamaguchi, C. Holm, M.A. Rizzo, D. Brasaemle, and C. Sztalryd. 2009. Activation of hormone-sensitive lipase requires two steps, protein phosphorylation and binding to the PAT-1 domain of lipid droplet coat proteins. The Journal of Biological Chemistry 284: 32116–32125. doi:10.1074/jbc.M109.006726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q.A., C. Tao, R.K. Gupta, and P.E. Scherer. 2013. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Medicine 19: 1338–1344. doi:10.1038/nm.3324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watt, M.J., and G.R. Steinberg. 2008. Regulation and function of triacylglycerol lipases in cellular metabolism. The Biochemical Journal 414: 313–325. doi:10.1042/BJ20080305.

    Article  CAS  PubMed  Google Scholar 

  • Wilfling, F., A.R. Thiam, M.-J. Olarte, J. Wang, R. Beck, T.J. Gould, E.S. Allgeyer, F. Pincet, J. Bewersdorf, R.V. Farese, and T.C. Walther. 2014. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. eLife 3: e01607. doi:10.7554/eLife.01607.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolins, N.E., J.R. Skinner, M.J. Schoenfish, A. Tzekov, K.G. Bensch, and P.E. Bickel. 2003. Adipocyte protein S3-12 coats nascent lipid droplets. The Journal of Biological Chemistry 278: 37713–37721. doi:10.1074/jbc.M304025200.

    Article  CAS  PubMed  Google Scholar 

  • Wolins, N.E., B.K. Quaynor, J.R. Skinner, M.J. Schoenfish, A. Tzekov, and P.E. Bickel. 2005. S3-12, Adipophilin, and TIP47 package lipid in adipocytes. The Journal of Biological Chemistry 280: 19146–19155. doi:10.1074/jbc.M500978200.

    Article  CAS  PubMed  Google Scholar 

  • Wolins, N.E., B.K. Quaynor, J.R. Skinner, A. Tzekov, M.A. Croce, M.C. Gropler, V. Varma, A. Yao-Borengasser, N. Rasouli, P.A. Kern, B.N. Finck, and P.E. Bickel. 2006. OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. Diabetes 55: 3418–3428. doi:10.2337/db06-0399.

    Article  CAS  PubMed  Google Scholar 

  • Wu, L., D. Xu, L. Zhou, B. Xie, L. Yu, H. Yang, L. Huang, J. Ye, H. Deng, Y.A. Yuan, S. Chen, and P. Li. 2014. Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth. Developmental Cell 30: 378–393. doi:10.1016/j.devcel.2014.07.005.

    Article  CAS  PubMed  Google Scholar 

  • Wueest, S., X. Yang, J. Liu, E.J. Schoenle, and D. Konrad. 2012. Inverse regulation of basal lipolysis in perigonadal and mesenteric fat depots in mice. American Journal of Physiology. Endocrinology and Metabolism 302: E153–E160. doi:10.1152/ajpendo.00338.2011.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., X. Lu, M. Lombès, G.B. Rha, Y.-I. Chi, T.M. Guerin, E.J. Smart, and J. Liu. 2010. The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metabolism 11: 194–205. doi:10.1016/j.cmet.2010.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, H., A. Galea, V. Sytnyk, and M. Crossley. 2012. Controlling the size of lipid droplets: Lipid and protein factors. Current Opinion in Cell Biology 24: 509–516. doi:10.1016/j.ceb.2012.05.012.

    Article  CAS  PubMed  Google Scholar 

  • Yin, J., Z. Gao, Q. He, D. Zhou, Z. Guo, and J. Ye. 2009. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. American Journal of Physiology. Endocrinology and Metabolism 296: E333–E342. doi:10.1152/ajpendo.90760.2008.

    Article  CAS  PubMed  Google Scholar 

  • Yin, X., I.R. Lanza, J.M. Swain, M.G. Sarr, K.S. Nair, and M.D. Jensen. 2014. Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. The Journal of Clinical Endocrinology and Metabolism 99: E209–E216. doi:10.1210/jc.2013-3042.

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa, T., R. Kurata, M. Kimura, and H. Inoko. 2011. Which CIDE are you on? Apoptosis and energy metabolism. Molecular BioSystems 7: 91–100. doi:10.1039/c0mb00099j.

    Article  CAS  PubMed  Google Scholar 

  • Yu, W., Z. Chen, J. Zhang, L. Zhang, H. Ke, L. Huang, Y. Peng, X. Zhang, S. Li, B.T. Lahn, and A.P. Xiang. 2008. Critical role of phosphoinositide 3-kinase cascade in adipogenesis of human mesenchymal stem cells. Molecular and Cellular Biochemistry 310: 11–18. doi:10.1007/s11010-007-9661-9.

    Article  CAS  PubMed  Google Scholar 

  • Zehmer, J.K., Y. Huang, G. Peng, J. Pu, R.G.W. Anderson, and P. Liu. 2009. A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9: 914–921. doi:10.1002/pmic.200800584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann, R., J.G. Strauss, G. Haemmerle, G. Schoiswohl, R. Birner-Gruenberger, M. Riederer, A. Lass, G. Neuberger, F. Eisenhaber, A. Hermetter, and R. Zechner. 2004. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306: 1383–1386. doi:10.1126/science.1100747.

    Article  CAS  PubMed  Google Scholar 

  • Zuo, Y., L. Qiang, and S.R. Farmer. 2006. Activation of CCAAT/enhancer-binding protein (C/EBP) alpha expression by C/EBP beta during adipogenesis requires a peroxisome proliferator-activated receptor-gamma-associated repression of HDAC1 at the C/ebp alpha gene promoter. The Journal of Biological Chemistry 281: 7960–7967. doi:10.1074/jbc.M510682200.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atilla Engin M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Engin, A. (2017). Fat Cell and Fatty Acid Turnover in Obesity. In: Engin, A., Engin, A. (eds) Obesity and Lipotoxicity. Advances in Experimental Medicine and Biology, vol 960. Springer, Cham. https://doi.org/10.1007/978-3-319-48382-5_6

Download citation

Publish with us

Policies and ethics