Skip to main content

Human Protein Kinases and Obesity

  • Chapter
  • First Online:
Obesity and Lipotoxicity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 960))

Abstract

The action of protein kinases and protein phosphatases is essential for multiple physiological responses. Each protein kinase displays its own unique substrate specificity, and a regulatory mechanism that may be modulated by association with other proteins. Protein kinases are classified by the target amino acid in their substrates. Some protein kinases can phosphorylate both serine/threonine, as well as tyrosine residues. This group of kinases has been known as dual specificity kinases. Unlike the dual specificity kinases, a heterogeneous group of protein phosphatases are known as dual-specificity phosphatases. These phosphatases remove phosphate groups from tyrosine and serine/threonine residues on their substrate. Dual-specificity phosphatases are important signal transduction enzymes that regulate various cellular processes in coordination with protein kinases. The protein kinase-phosphoproteins interactions play an important role in obesity . In obesity, the pro- and anti-inflammatory effects of adipokines and cytokines through intracellular signaling pathways mainly involve the nuclear factor kappa B (NF-kappaB) and the c-Jun N-terminal kinase (JNK) systems as well as the inhibitor of kappaB-kinase beta (IKK beta). Impairment of insulin signaling in obesity is largely mediated by the activation of the IKKbeta and the JNK. Furthermore, oxidative stress and endoplasmic reticulum (ER) stress activate the JNK pathway which suppresses insulin biosynthesis. Additionally, obesity-activated calcium/calmodulin dependent-protein kinase II/p38 suppresses insulin-induced protein kinase B phosphorylation by activating the ER stress effector, activating transcription factor-4. Obese adults with vascular endothelial dysfunction have greater endothelial cells activation of unfolded protein response stress sensors, RNA-dependent protein kinase-like ER eukaryotic initiation factor-2alpha kinase (PERK) and activating transcription factor-6. The transcriptional regulation of adipogenesis in obesity is influenced by AGC (protein kinase A (PKA), PKG, PKC) family signaling kinases. Obesity may induce systemic oxidative stress and increase reactive oxygen species in adipocytes. Increase in intracellular oxidative stress can promote PKC-beta activation. Activated PKC-beta induces growth factor adapter Shc phosphorylation. Shc-generated peroxides reduce mitochondrial oxygen consumption and enhances triglyceride accumulation. Obesity is fundamentally caused by cellular energy imbalance and dysregulation. Like adenosine monophosphate (AMP)-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), N-terminal Per-ARNT-Sim (PAS) kinase are nutrient responsive protein kinases and important for proper regulation of glucose metabolism in mammals at both the hormonal and cellular level. Defective responses of AMPK to leptin may contribute to resistance to leptin action on food intake and energy expenditure in obese states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, J., M. Kusuhara, R.J. Ulevitch, B.C. Berk, and J.D. Lee. 1996. Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase. The Journal of Biological Chemistry 271: 16586–16590.

    Article  CAS  PubMed  Google Scholar 

  • Aguiari, P., S. Leo, B. Zavan, V. Vindigni, A. Rimessi, K. Bianchi, C. Franzin, R. Cortivo, M. Rossato, R. Vettor, G. Abatangelo, T. Pozzan, P. Pinton, and R. Rizzuto. 2008. High glucose induces adipogenic differentiation of muscle-derived stem cells. Proceedings of the National Academy of Sciences of the United States of America 105: 1226–1231. doi:10.1073/pnas.0711402105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aguirre, V., T. Uchida, L. Yenush, R. Davis, and M.F. White. 2000. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). The Journal of Biological Chemistry 275: 9047–9054.

    Article  CAS  PubMed  Google Scholar 

  • Alfaradhi, M.Z., D.S. Fernandez-Twinn, M.S. Martin-Gronert, B. Musial, A. Fowden, and S.E. Ozanne. 2014. Oxidative stress and altered lipid homeostasis in the programming of offspring fatty liver by maternal obesity. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 307: R26–R34. doi:10.1152/ajpregu.00049.2014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arencibia, J.M., D. Pastor-Flores, A.F. Bauer, J.O. Schulze, and R.M. Biondi. 2013. AGC protein kinases: From structural mechanism of regulation to allosteric drug development for the treatment of human diseases. Biochimica et Biophysica Acta 1834: 1302–1321. doi:10.1016/j.bbapap.2013.03.010.

    Article  CAS  PubMed  Google Scholar 

  • Bae, S.S., H. Cho, J. Mu, and M.J. Birnbaum. 2003. Isoform-specific regulation of insulin-dependent glucose uptake by Akt/protein kinase B. The Journal of Biological Chemistry 278: 49530–49536. doi:10.1074/jbc.M306782200.

    Article  CAS  PubMed  Google Scholar 

  • Bakan, A., J.S. Lazo, P. Wipf, K.M. Brummond, and I. Bahar. 2008. Toward a molecular understanding of the interaction of dual specificity phosphatases with substrates: Insights from structure-based modeling and high throughput screening. Current Medicinal Chemistry 15: 2536–2544.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bashan, N., K. Dorfman, T. Tarnovscki, I. Harman-Boehm, I.F. Liberty, M. Blüher, S. Ovadia, T. Maymon-Zilberstein, R. Potashnik, M. Stumvoll, E. Avinoach, and A. Rudich. 2007. Mitogen-activated protein kinases, inhibitory-kappaB kinase, and insulin signaling in human omental versus subcutaneous adipose tissue in obesity. Endocrinology 148: 2955–2962. doi:10.1210/en.2006-1369.

    Article  CAS  PubMed  Google Scholar 

  • Bengoechea-Alonso, M.T., and J. Ericsson. 2009. A phosphorylation cascade controls the degradation of active SREBP1. The Journal of Biological Chemistry 284: 5885–5895. doi:10.1074/jbc.M807906200.

    Article  CAS  PubMed  Google Scholar 

  • Bijland, S., S.J. Mancini, and I.P. Salt. 2013. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clinical Science (London, England) 1979(124): 491–507. doi:10.1042/CS20120536.

    Article  CAS  Google Scholar 

  • Bilanges, B., and B. Vanhaesebroeck. 2010. A new tool to dissect the function of p70 S6 kinase. The Biochemical Journal 431: e1–e3. doi:10.1042/BJ20101445.

    Article  CAS  PubMed  Google Scholar 

  • Blanchard, P.-G., W.T. Festuccia, V.P. Houde, P. St-Pierre, S. Brûlé, V. Turcotte, M. Côté, K. Bellmann, A. Marette, and Y. Deshaies. 2012. Major involvement of mTOR in the PPARγ-induced stimulation of adipose tissue lipid uptake and fat accretion. Journal of Lipid Research 53: 1117–1125. doi:10.1194/jlr.M021485.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blanco Martínez de Morentin, P., C.R. González, A.K. Saha, L. Martins, C. Diéguez, A. Vidal-Puig, M. Tena-Sempere, and M. López. 2011. Hypothalamic AMP-activated protein kinase as a mediator of whole body energy balance. Reviews in Endocrine & Metabolic Disorders 12: 127–140. doi:10.1007/s11154-011-9165-5.

    Article  CAS  Google Scholar 

  • Blenis, J. 1993. Signal transduction via the MAP kinases: Proceed at your own RSK. Proceedings of the National Academy of Sciences of the United States of America 90: 5889–5892.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bobrovnikova-Marjon, E., D. Pytel, M.J. Riese, L.P. Vaites, N. Singh, G.A. Koretzky, E.S. Witze, and J.A. Diehl. 2012. PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation. Molecular and Cellular Biology 32: 2268–2278. doi:10.1128/MCB.00063-12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boden, G., S. Salehi, P. Cheung, C. Homko, W. Song, C. Loveland-Jones, and S. Jayarajan. 2013. Comparison of in vivo effects of insulin on SREBP-1c activation and INSIG-1/2 in rat liver and human and rat adipose tissue. Obesity (Silver Spring, Md.) 21: 1208–1214. doi:10.1002/oby.20134.

    Article  CAS  Google Scholar 

  • Busschots, K., L.A. Lopez-Garcia, C. Lammi, A. Stroba, S. Zeuzem, A. Piiper, P.M. Alzari, S. Neimanis, J.M. Arencibia, M. Engel, J.O. Schulze, and R.M. Biondi. 2012. Substrate-selective inhibition of protein kinase PDK1 by small compounds that bind to the PIF-pocket allosteric docking site. Chemistry & Biology 19: 1152–1163. doi:10.1016/j.chembiol.2012.07.017.

    Article  CAS  Google Scholar 

  • Capurso, C., and A. Capurso. 2012. From excess adiposity to insulin resistance: The role of free fatty acids. Vascular Pharmacology 57: 91–97. doi:10.1016/j.vph.2012.05.003.

    Article  CAS  PubMed  Google Scholar 

  • Carling, D. 2005. AMP-activated protein kinase: Balancing the scales. Biochimie 87: 87–91. doi:10.1016/j.biochi.2004.10.017.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho-Filho, M.A., B.M. Carvalho, A.G. Oliveira, D. Guadagnini, M. Ueno, M.M. Dias, D.M. Tsukumo, S.M. Hirabara, L.F. Reis, R. Curi, J.B.C. Carvalheira, and M.J.A. Saad. 2012. Double-stranded RNA-activated protein kinase is a key modulator of insulin sensitivity in physiological conditions and in obesity in mice. Endocrinology 153: 5261–5274. doi:10.1210/en.2012-1400.

    Article  CAS  PubMed  Google Scholar 

  • Cazanave, S.C., J.L. Mott, S.F. Bronk, N.W. Werneburg, C.D. Fingas, X.W. Meng, N. Finnberg, W.S. El-Deiry, S.H. Kaufmann, and G.J. Gores. 2011. Death receptor 5 signaling promotes hepatocyte lipoapoptosis. The Journal of Biological Chemistry 286: 39336–39348. doi:10.1074/jbc.M111.280420.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, R.H., C. Sarnecki, and J. Blenis. 1992. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Molecular and Cellular Biology 12: 915–927.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiang, S.-H., M. Bazuine, C.N. Lumeng, L.M. Geletka, J. Mowers, N.M. White, J.-T. Ma, J. Zhou, N. Qi, D. Westcott, J.B. Delproposto, T.S. Blackwell, F.E. Yull, and A.R. Saltiel. 2009. The protein kinase IKKepsilon regulates energy balance in obese mice. Cell 138: 961–975. doi:10.1016/j.cell.2009.06.046.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choura, M., and A. Rebaï. 2011. Receptor tyrosine kinases: From biology to pathology. Journal of Receptor and Signal Transduction Research 31: 387–394. doi:10.3109/10799893.2011.625425.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, P. 2002. The origins of protein phosphorylation. Nature Cell Biology 4: E127–E130. doi:10.1038/ncb0502-e127.

    Article  CAS  PubMed  Google Scholar 

  • Collins, B.J., M. Deak, V. Murray-Tait, K.G. Storey, and D.R. Alessi. 2005. In vivo role of the phosphate groove of PDK1 defined by knockin mutation. Journal of Cell Science 118: 5023–5034. doi:10.1242/jcs.02617.

    Article  CAS  PubMed  Google Scholar 

  • Crews, C.M., A. Alessandrini, and R.L. Erikson. 1992. The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258: 478–480.

    Article  CAS  PubMed  Google Scholar 

  • da Silva Xavier, G., J. Rutter, and G.A. Rutter. 2004. Involvement of Per-Arnt-Sim (PAS) kinase in the stimulation of preproinsulin and pancreatic duodenum homeobox 1 gene expression by glucose. Proceedings of the National Academy of Sciences of the United States of America 101: 8319–8324. doi:10.1073/pnas.0307737101.

    Article  PubMed Central  PubMed  Google Scholar 

  • Danai, L.V., A. Guilherme, K.V. Guntur, J. Straubhaar, S.M. Nicoloro, and M.P. Czech. 2013. Map4k4 suppresses Srebp-1 and adipocyte lipogenesis independent of JNK signaling. Journal of Lipid Research 54: 2697–2707. doi:10.1194/jlr.M038802.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dann, S.G., A. Selvaraj, and G. Thomas. 2007. mTOR Complex1-S6K1 signaling: At the crossroads of obesity, diabetes and cancer. Trends in Molecular Medicine 13: 252–259. doi:10.1016/j.molmed.2007.04.002.

    Article  CAS  PubMed  Google Scholar 

  • Davis, R.J. 1994. MAPKs: New JNK expands the group. Trends in Biochemical Sciences 19: 470–473.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2000. Signal transduction by the JNK group of MAP kinases. Cell 103: 239–252.

    Article  CAS  PubMed  Google Scholar 

  • De Marchi, E., F. Baldassari, A. Bononi, M.R. Wieckowski, and P. Pinton. 2013. Oxidative stress in cardiovascular diseases and obesity: Role of p66Shc and protein kinase C. Oxidative Medicine and Cellular Longevity 2013: 564961. doi:10.1155/2013/564961.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Paula, R.M., T.M. Lamb, L. Bennett, and D. Bell-Pedersen. 2008. A connection between MAPK pathways and circadian clocks. Cell Cycle (Georgetown, Texas) 7: 2630–2634. doi:10.4161/cc.7.17.6516.

    Article  Google Scholar 

  • Dérijard, B., J. Raingeaud, T. Barrett, I.H. Wu, J. Han, R.J. Ulevitch, and R.J. Davis. 1995. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267: 682–685.

    Article  PubMed  Google Scholar 

  • Dhanasekaran, N., and E. Premkumar Reddy. 1998. Signaling by dual specificity kinases. Oncogene 17: 1447–1455. doi:10.1038/sj.onc.1202251.

    Article  CAS  PubMed  Google Scholar 

  • Dibble, C.C., and B.D. Manning. 2013. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nature Cell Biology 15: 555–564. doi:10.1038/ncb2763.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding, Y., J. Li, S. Liu, L. Zhang, H. Xiao, J. Li, H. Chen, R.B. Petersen, K. Huang, and L. Zheng. 2014. DNA hypomethylation of inflammation-associated genes in adipose tissue of female mice after multigenerational high fat diet feeding. International Journal of Obesity 38: 198–204. doi:10.1038/ijo.2013.98.

    Article  CAS  PubMed  Google Scholar 

  • Ducruet, A.P., A. Vogt, P. Wipf, and J.S. Lazo. 2005. Dual specificity protein phosphatases: Therapeutic targets for cancer and Alzheimer’s disease. Annual Review of Pharmacology and Toxicology 45: 725–750. doi:10.1146/annurev.pharmtox.45.120403.100040.

    Article  CAS  PubMed  Google Scholar 

  • Dunlop, E.A., and A.R. Tee. 2013. The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis. Biochemical Society Transactions 41: 939–943. doi:10.1042/BST20130030.

    Article  CAS  PubMed  Google Scholar 

  • Egan, D., J. Kim, R.J. Shaw, and K.-L. Guan. 2011. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7: 643–644.

    Article  CAS  PubMed  Google Scholar 

  • Emanuelli, B., P. Peraldi, C. Filloux, C. Chavey, K. Freidinger, D.J. Hilton, G.S. Hotamisligil, and E. Van Obberghen. 2001. SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. The Journal of Biological Chemistry 276: 47944–47949. doi:10.1074/jbc.M104602200.

    Article  CAS  PubMed  Google Scholar 

  • Emanuelli, B., D. Eberlé, R. Suzuki, and C.R. Kahn. 2008. Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance. Proceedings of the National Academy of Sciences of the United States of America 105: 3545–3550. doi:10.1073/pnas.0712275105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farese, R.V., and M.P. Sajan. 2010. Metabolic functions of atypical protein kinase C: “Good” and “bad” as defined by nutritional status. American Journal of Physiology. Endocrinology and Metabolism 298: E385–E394. doi:10.1152/ajpendo.00608.2009.

    Article  CAS  PubMed  Google Scholar 

  • Farese, R.V., M.P. Sajan, and M.L. Standaert. 2005. Insulin-sensitive protein kinases (atypical protein kinase C and protein kinase B/Akt): Actions and defects in obesity and type II diabetes. Experimental Biology and Medicine (Maywood, N.J.) 230: 593–605.

    CAS  Google Scholar 

  • Farmer, S.R. 2006. Transcriptional control of adipocyte formation. Cell Metabolism 4: 263–273. doi:10.1016/j.cmet.2006.07.001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez-Twinn, D.S., H.L. Blackmore, L. Siggens, D.A. Giussani, C.M. Cross, R. Foo, and S.E. Ozanne. 2012. The programming of cardiac hypertrophy in the offspring by maternal obesity is associated with hyperinsulinemia, AKT, ERK, and mTOR activation. Endocrinology 153: 5961–5971. doi:10.1210/en.2012-1508.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernández-Veledo, S., A. Vázquez-Carballo, R. Vila-Bedmar, V. Ceperuelo-Mallafré, and J. Vendrell. 2013. Role of energy- and nutrient-sensing kinases AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in adipocyte differentiation. IUBMB Life 65: 572–583. doi:10.1002/iub.1170.

    Article  CAS  PubMed  Google Scholar 

  • Flach, R.J.R., H. Qin, L. Zhang, and A.M. Bennett. 2011. Loss of mitogen-activated protein kinase phosphatase-1 protects from hepatic steatosis by repression of cell death-inducing DNA fragmentation factor A (DFFA)-like effector C (CIDEC)/fat-specific protein 27. The Journal of Biological Chemistry 286: 22195–22202. doi:10.1074/jbc.M110.210237.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frost, J.A., H. Steen, P. Shapiro, T. Lewis, N. Ahn, P.E. Shaw, and M.H. Cobb. 1997. Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. The EMBO Journal 16: 6426–6438. doi:10.1093/emboj/16.21.6426.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao, D., S. Nong, X. Huang, Y. Lu, H. Zhao, Y. Lin, Y. Man, S. Wang, J. Yang, and J. Li. 2010. The effects of palmitate on hepatic insulin resistance are mediated by NADPH Oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. The Journal of Biological Chemistry 285: 29965–29973. doi:10.1074/jbc.M110.128694.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gardner, B.M., D. Pincus, K. Gotthardt, C.M. Gallagher, and P. Walter. 2013. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harbor Perspectives in Biology 5: a013169. doi:10.1101/cshperspect.a013169.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geng, T., W. Hu, M.H. Broadwater, J.M. Snider, J. Bielawski, S.B. Russo, J.H. Schwacke, J. Ross, and L.A. Cowart. 2013. Fatty acids differentially regulate insulin resistance through endoplasm reticulum stress-mediated induction of tribbles homologue 3: A potential link between dietary fat composition and the pathophysiological outcomes of obesity. Diabetologia 56: 2078–2087. doi:10.1007/s00125-013-2973-2.

    Article  CAS  PubMed  Google Scholar 

  • Giardina, J.B., D.J. Tanner, and R.A. Khalil. 2001. Oxidized-LDL enhances coronary vasoconstriction by increasing the activity of protein kinase C isoforms alpha and epsilon. Hypertension (Dallas, Tex.: 1979) 37: 561–568.

    Article  CAS  Google Scholar 

  • Gil, A., C. María Aguilera, M. Gil-Campos, and R. Cañete. 2007. Altered signalling and gene expression associated with the immune system and the inflammatory response in obesity. The British Journal of Nutrition 98(Suppl 1): S121–S126. doi:10.1017/S0007114507838050.

    CAS  PubMed  Google Scholar 

  • Goldsmith, C.S., and D. Bell-Pedersen. 2013. Diverse roles for MAPK signaling in circadian clocks. Advances in Genetics 84: 1–39. doi:10.1016/B978-0-12-407703-4.00001-3.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez, F.A., A. Seth, D.L. Raden, D.S. Bowman, F.S. Fay, and R.J. Davis. 1993. Serum-induced translocation of mitogen-activated protein kinase to the cell surface ruffling membrane and the nucleus. The Journal of Cell Biology 122: 1089–1101.

    Article  CAS  PubMed  Google Scholar 

  • González-Périz, A., R. Horrillo, N. Ferré, K. Gronert, B. Dong, E. Morán-Salvador, E. Titos, M. Martínez-Clemente, M. López-Parra, V. Arroyo, and J. Clària. 2009. Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: A role for resolvins and protectins. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 23: 1946–1957. doi:10.1096/fj.08-125674.

    Article  CAS  Google Scholar 

  • Graves, D., C. Bartleson, A. Biorn, and M. Pete. 1999. Substrate and inhibitor recognition of protein kinases: What is known about the catalytic subunit of phosphorylase kinase? Pharmacology & Therapeutics 82: 143–155.

    Article  CAS  Google Scholar 

  • Grose, J.H., and J. Rutter. 2010. The role of PAS kinase in PASsing the glucose signal. Sensors 10: 5668–5682. doi:10.3390/s100605668.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gual, P., Y. Le Marchand-Brustel, and J.-F. Tanti. 2005. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87: 99–109. doi:10.1016/j.biochi.2004.10.019.

    Article  CAS  PubMed  Google Scholar 

  • Häcker, H., and M. Karin. 2006. Regulation and function of IKK and IKK-related kinases. Science’s STKE: Signal Transduction Knowledge Environment 2006: re13. doi:10.1126/stke.3572006re13.

    PubMed  Google Scholar 

  • Han, J., and R.J. Kaufman. 2014. Measurement of the unfolded protein response to investigate its role in adipogenesis and obesity. Methods in Enzymology 538: 135–150. doi:10.1016/B978-0-12-800280-3.00008-6.

    Article  CAS  PubMed  Google Scholar 

  • Hao, H.-X., and J. Rutter. 2008. The role of PAS kinase in regulating energy metabolism. IUBMB Life 60: 204–209. doi:10.1002/iub.32.

    Article  CAS  PubMed  Google Scholar 

  • He, S., and Y.-X. Tao. 2014. Defect in MAPK signaling as a cause for monogenic obesity aused by inactivating mutations in the melanocortin-4 receptor gene. International Journal of Biological Sciences 10: 1128–1137. doi:10.7150/ijbs.10359.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirosumi, J., G. Tuncman, L. Chang, C.Z. Görgün, K.T. Uysal, K. Maeda, M. Karin, and G.S. Hotamisligil. 2002. A central role for JNK in obesity and insulin resistance. Nature 420: 333–336. doi:10.1038/nature01137.

    Article  CAS  PubMed  Google Scholar 

  • Hotamisligil, G.S. 2006. Inflammation and metabolic disorders. Nature 444: 860–867. doi:10.1038/nature05485.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2008. Inflammation and endoplasmic reticulum stress in obesity and diabetes. International Journal of Obesity 2005(32 Suppl 7): S52–S54. doi:10.1038/ijo.2008.238.

    Article  CAS  Google Scholar 

  • ———. 2010. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140: 900–917. doi:10.1016/j.cell.2010.02.034.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Humphrey, S.J., G. Yang, P. Yang, D.J. Fazakerley, J. Stöckli, J.Y. Yang, and D.E. James. 2013. Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metabolism 17: 1009–1020. doi:10.1016/j.cmet.2013.04.010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaeschke, A., and R.J. Davis. 2007. Metabolic stress signaling mediated by mixed-lineage kinases. Molecular Cell 27: 498–508. doi:10.1016/j.molcel.2007.07.008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaeschke, A., M.P. Czech, and R.J. Davis. 2004. An essential role of the JIP1 scaffold protein for JNK activation in adipose tissue. Genes & Development 18: 1976–1980. doi:10.1101/gad.1216504.

    Article  CAS  Google Scholar 

  • Jiao, P., J. Ma, B. Feng, H. Zhang, J.A. Diehl, Y.E. Chin, W. Yan, and H. Xu. 2011. FFA-induced adipocyte inflammation and insulin resistance: Involvement of ER stress and IKKβ pathways. Obesity (Silver Spring, Md.) 19: 483–491. doi:10.1038/oby.2010.200.

    Article  CAS  Google Scholar 

  • Johnson, L.N., and R.J. Lewis. 2001. Structural basis for control by phosphorylation. Chemical Reviews 101: 2209–2242.

    Article  CAS  PubMed  Google Scholar 

  • Kaneto, H., T.-A. Matsuoka, Y. Nakatani, D. Kawamori, T. Miyatsuka, M. Matsuhisa, and Y. Yamasaki. 2005. Oxidative stress, ER stress, and the JNK pathway in type 2 diabetes. Journal of Molecular Medicine (Berlin, Germany) 83: 429–439. doi:10.1007/s00109-005-0640-x.

    Article  CAS  Google Scholar 

  • Kaplon, R.E., E. Chung, L. Reese, K. Cox-York, D.R. Seals, and C.L. Gentile. 2013. Activation of the unfolded protein response in vascular endothelial cells of nondiabetic obese adults. The Journal of Clinical Endocrinology and Metabolism 98: E1505–E1509. doi:10.1210/jc.2013-1841.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kauppinen, A., T. Suuronen, J. Ojala, K. Kaarniranta, and A. Salminen. 2013. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cellular Signalling 25: 1939–1948. doi:10.1016/j.cellsig.2013.06.007.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.-B., K. Kotani, T.P. Ciaraldi, R.R. Henry, and B.B. Kahn. 2003. Insulin-stimulated protein kinase C lambda/zeta activity is reduced in skeletal muscle of humans with obesity and type 2 diabetes: Reversal with weight reduction. Diabetes 52: 1935–1942.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M.-S., Y.K. Pak, P.-G. Jang, C. Namkoong, Y.-S. Choi, J.-C. Won, K.-S. Kim, S.-W. Kim, H.-S. Kim, J.-Y. Park, Y.-B. Kim, and K.-U. Lee. 2006. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nature Neuroscience 9: 901–906. doi:10.1038/nn1731.

    Article  CAS  PubMed  Google Scholar 

  • Körner, A., W. Kiess, M. Stumvoll, and P. Kovacs. 2008. Polygenic contribution to obesity: Genome-wide strategies reveal new targets. Frontiers of Hormone Research 36: 12–36. doi:10.1159/0000115335.

    PubMed  Google Scholar 

  • Lagace, T.A., and N.D. Ridgway. 2013. The role of phospholipids in the biological activity and structure of the endoplasmic reticulum. Biochimica et Biophysica Acta 1833: 2499–2510. doi:10.1016/j.bbamcr.2013.05.018.

    Article  CAS  PubMed  Google Scholar 

  • Le Marchand-Brustel, Y., P. Gual, T. Grémeaux, T. Gonzalez, R. Barrès, and J.-F. Tanti. 2003. Fatty acid-induced insulin resistance: Role of insulin receptor substrate 1 serine phosphorylation in the retroregulation of insulin signalling. Biochemical Society Transactions 31: 1152–1156. doi:10.1042/bst0311152.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y., and E.-K. Kim. 2013. AMP-activated protein kinase as a key molecular link between metabolism and clockwork. Experimental & Molecular Medicine 45: e33. doi:10.1038/emm.2013.65.

    Article  CAS  Google Scholar 

  • Lee, S., and F.T.F. Tsai. 2005. Molecular chaperones in protein quality control. Journal of Biochemistry and Molecular Biology 38: 259–265.

    CAS  PubMed  Google Scholar 

  • Lee, Y.H., J. Giraud, R.J. Davis, and M.F. White. 2003. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. The Journal of Biological Chemistry 278: 2896–2902. doi:10.1074/jbc.M208359200.

    Article  CAS  PubMed  Google Scholar 

  • Lee, W.J., E.H. Koh, J.C. Won, M.-S. Kim, J.-Y. Park, and K.-U. Lee. 2005. Obesity: The role of hypothalamic AMP-activated protein kinase in body weight regulation. The International Journal of Biochemistry & Cell Biology 37: 2254–2259. doi:10.1016/j.biocel.2005.06.019.

    Article  CAS  Google Scholar 

  • Li, H., and X. Yu. 2013. Emerging role of JNK in insulin resistance. Current Diabetes Reviews 9: 422–428.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., J. Lee, C. He, M.-H. Zou, and Z. Xie. 2014a. Suppression of the mTORC1/STAT3/Notch1 pathway by activated AMPK prevents hepatic insulin resistance induced by excess amino acids. American Journal of Physiology. Endocrinology and Metabolism 306: E197–E209. doi:10.1152/ajpendo.00202.2013.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Q. Min, C. Ouyang, J. Lee, C. He, M.-H. Zou, and Z. Xie. 2014b. AMPK activation prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 signaling and endoplasmic reticulum stress response. Biochimica et Biophysica Acta 1842: 1844–1854. doi:10.1016/j.bbadis.2014.07.002.

    Article  CAS  PubMed  Google Scholar 

  • Lindberg, R.A., A.M. Quinn, and T. Hunter. 1992. Dual-specificity protein kinases: Will any hydroxyl do? Trends in Biochemical Sciences 17: 114–119.

    Article  CAS  PubMed  Google Scholar 

  • Malhi, H., S.F. Bronk, N.W. Werneburg, and G.J. Gores. 2006. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. The Journal of Biological Chemistry 281: 12093–12101. doi:10.1074/jbc.M510660200.

    Article  CAS  PubMed  Google Scholar 

  • Manning, B.D., and L.C. Cantley. 2007. AKT/PKB signaling: Navigating downstream. Cell 129: 1261–1274. doi:10.1016/j.cell.2007.06.009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manning, G., G.D. Plowman, T. Hunter, and S. Sudarsanam. 2002a. Evolution of protein kinase signaling from yeast to man. Trends in Biochemical Sciences 27: 514–520.

    Article  CAS  PubMed  Google Scholar 

  • Manning, G., D.B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam. 2002b. The protein kinase complement of the human genome. Science 298: 1912–1934. doi:10.1126/science.1075762.

    Article  CAS  PubMed  Google Scholar 

  • Martin, T.L., T. Alquier, K. Asakura, N. Furukawa, F. Preitner, and B.B. Kahn. 2006. Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle. The Journal of Biological Chemistry 281: 18933–18941. doi:10.1074/jbc.M512831200.

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki, H., H. Daitoku, M. Hatta, K. Tanaka, and A. Fukamizu. 2003. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proceedings of the National Academy of Sciences of the United States of America 100: 11285–11290. doi:10.1073/pnas.1934283100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizukami, Y., K. Yoshioka, S. Morimoto, and K.I. Yoshida. 1997. A novel mechanism of JNK1 activation. Nuclear translocation and activation of JNK1 during ischemia and reperfusion. The Journal of Biological Chemistry 272: 16657–16662.

    Article  CAS  PubMed  Google Scholar 

  • Mora, A., D. Komander, D.M.F. van Aalten, and D.R. Alessi. 2004. PDK1, the master regulator of AGC kinase signal transduction. Seminars in Cell & Developmental Biology 15: 161–170.

    Article  CAS  Google Scholar 

  • Nakamura, T., M. Furuhashi, P. Li, H. Cao, G. Tuncman, N. Sonenberg, C.Z. Gorgun, and G.S. Hotamisligil. 2010. Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell 140: 338–348. doi:10.1016/j.cell.2010.01.001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen, M.T.A., H. Satoh, S. Favelyukis, J.L. Babendure, T. Imamura, J.I. Sbodio, J. Zalevsky, B.I. Dahiyat, N.-W. Chi, and J.M. Olefsky. 2005. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. The Journal of Biological Chemistry 280: 35361–35371. doi:10.1074/jbc.M504611200.

    Article  CAS  PubMed  Google Scholar 

  • Odegaard, J.I., R.R. Ricardo-Gonzalez, M.H. Goforth, C.R. Morel, V. Subramanian, L. Mukundan, A. Red Eagle, D. Vats, F. Brombacher, A.W. Ferrante, and A. Chawla. 2007. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447: 1116–1120. doi:10.1038/nature05894.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ogborn, D.I., B.R. McKay, J.D. Crane, G. Parise, and M.A. Tarnopolsky. 2014. The unfolded protein response is triggered following a single, unaccustomed resistance-exercise bout. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 307: R664–R669. doi:10.1152/ajpregu.00511.2013.

    Article  CAS  PubMed  Google Scholar 

  • Owen, D.J., M.E. Noble, E.F. Garman, A.C. Papageorgiou, and L.N. Johnson. 1995. Two structures of the catalytic domain of phosphorylase kinase: An active protein kinase complexed with substrate analogue and product. Structure (London, England: 1993) 1993(3): 467–482.

    Article  Google Scholar 

  • Ozcan, L., C.C.L. Wong, G. Li, T. Xu, U. Pajvani, S.K.R. Park, A. Wronska, B.-X. Chen, A.R. Marks, A. Fukamizu, J. Backs, H.A. Singer, J.R. Yates, D. Accili, and I. Tabas. 2012. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity. Cell Metabolism 15: 739–751. doi:10.1016/j.cmet.2012.03.002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ozcan, L., J. Cristina de Souza, A.A. Harari, J. Backs, E.N. Olson, and I. Tabas. 2013. Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling. Cell Metabolism 18: 803–815. doi:10.1016/j.cmet.2013.10.011.

    Article  CAS  PubMed  Google Scholar 

  • Paquot, N., J. De Flines, and M. Rorive. 2012. Obesity: A model of complex interactions between genetics and environment. Revue Médicale de Liège 67: 332–336.

    CAS  PubMed  Google Scholar 

  • Park, J., W.-J. Song, and K.C. Chung. 2009. Function and regulation of Dyrk1A: Towards understanding Down syndrome. Cellular and Molecular Life Sciences: CMLS 66: 3235–3240. doi:10.1007/s00018-009-0123-2.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, K.I., T. Brummer, P.M. O’Brien, and R.J. Daly. 2009. Dual-specificity phosphatases: Critical regulators with diverse cellular targets. The Biochemical Journal 418: 475–489.

    Article  CAS  PubMed  Google Scholar 

  • Pawson, T., and J.D. Scott. 2005. Protein phosphorylation in signaling—50 years and counting. Trends in Biochemical Sciences 30: 286–290. doi:10.1016/j.tibs.2005.04.013.

    Article  CAS  PubMed  Google Scholar 

  • Pearce, N.J., J.R.S. Arch, J.C. Clapham, M.P. Coghlan, S.L. Corcoran, C.A. Lister, A. Llano, G.B. Moore, G.J. Murphy, S.A. Smith, C.M. Taylor, J.W. Yates, A.D. Morrison, A.J. Harper, L. Roxbee-Cox, A. Abuin, E. Wargent, and J.C. Holder. 2004. Development of glucose intolerance in male transgenic mice overexpressing human glycogen synthase kinase-3beta on a muscle-specific promoter. Metabolism 53: 1322–1330.

    Article  CAS  PubMed  Google Scholar 

  • Pihl, E., K. Zilmer, T. Kullisaar, C. Kairane, A. Mägi, and M. Zilmer. 2006. Atherogenic inflammatory and oxidative stress markers in relation to overweight values in male former athletes. International Journal of Obesity 2005(30): 141–146. doi:10.1038/sj.ijo.0803068.

    Article  CAS  Google Scholar 

  • Poitout, V., and R.P. Robertson. 2008. Glucolipotoxicity: Fuel excess and beta-cell dysfunction. Endocrine Reviews 29: 351–366. doi:10.1210/er.2007-0023.

    Article  CAS  PubMed  Google Scholar 

  • Pons, S., V. Martin, L. Portal, R. Zini, D. Morin, A. Berdeaux, and B. Ghaleh. 2013. Regular treadmill exercise restores cardioprotective signaling pathways in obese mice independently from improvement in associated co-morbidities. Journal of Molecular and Cellular Cardiology 54: 82–89. doi:10.1016/j.yjmcc.2012.11.010.

    Article  CAS  PubMed  Google Scholar 

  • Rametta, R., E. Mozzi, P. Dongiovanni, B.M. Motta, M. Milano, G. Roviaro, S. Fargion, and L. Valenti. 2013. Increased insulin receptor substrate 2 expression is associated with steatohepatitis and altered lipid metabolism in obese subjects. International Journal of Obesity 2005(37): 986–992. doi:10.1038/ijo.2012.181.

    Article  CAS  Google Scholar 

  • Ranieri, S.C., S. Fusco, E. Panieri, V. Labate, M. Mele, V. Tesori, A.M. Ferrara, G. Maulucci, M. De Spirito, G.E. Martorana, T. Galeotti, and G. Pani. 2010. Mammalian life-span determinant p66shcA mediates obesity-induced insulin resistance. Proceedings of the National Academy of Sciences of the United States of America 107: 13420–13425. doi:10.1073/pnas.1008647107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ranieri, S.C., S. Fusco, and G. Pani. 2013. p66(ShcA): Linking mammalian longevity with obesity-induced insulin resistance. Vitamins and Hormones 91: 219–241. doi:10.1016/B978-0-12-407766-9.00009-2.

    Article  CAS  PubMed  Google Scholar 

  • Ricoult, S.J.H., and B.D. Manning. 2013. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Reports 14: 242–251. doi:10.1038/embor.2013.5.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, A.R., H. Almeida, and A.M. Gouveia. 2013. Alpha-MSH signalling via melanocortin 5 receptor promotes lipolysis and impairs re-esterification in adipocytes. Biochimica et Biophysica Acta 1831: 1267–1275.

    Article  CAS  PubMed  Google Scholar 

  • Ron, D., and P. Walter. 2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews. Molecular Cell Biology 8: 519–529. doi:10.1038/nrm2199.

    Article  CAS  PubMed  Google Scholar 

  • Roth, R.J., A.M. Le, L. Zhang, M. Kahn, V.T. Samuel, G.I. Shulman, and A.M. Bennett. 2009. MAPK phosphatase-1 facilitates the loss of oxidative myofibers associated with obesity in mice. The Journal of Clinical Investigation 119: 3817–3829. doi:10.1172/JCI39054.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roux, P.P., and J. Blenis. 2004. ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiology and Molecular Biology Reviews: MMBR 68: 320–344. doi:10.1128/MMBR.68.2.320-344.2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rukh, G., E. Sonestedt, O. Melander, B. Hedblad, E. Wirfält, U. Ericson, and M. Orho-Melander. 2013. Genetic susceptibility to obesity and diet intakes: Association and interaction analyses in the Malmö Diet and Cancer Study. Genes & Nutrition 8: 535–547. doi:10.1007/s12263-013-0352-8.

    Article  CAS  Google Scholar 

  • Sabapathy, K., K. Hochedlinger, S.Y. Nam, A. Bauer, M. Karin, and E.F. Wagner. 2004. Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Molecular Cell 15: 713–725. doi:10.1016/j.molcel.2004.08.028.

    Article  CAS  PubMed  Google Scholar 

  • Sabio, G., M. Das, A. Mora, Z. Zhang, J.Y. Jun, H.J. Ko, T. Barrett, J.K. Kim, and R.J. Davis. 2008. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322: 1539–1543. doi:10.1126/science.1160794.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sajan, M.P., M.E. Acevedo-Duncan, M.L. Standaert, R.A. Ivey, M. Lee, and R.V. Farese. 2014. Akt-dependent phosphorylation of hepatic FoxO1 is compartmentalized on a WD40/ProF scaffold and is selectively inhibited by aPKC in early phases of diet-induced obesity. Diabetes 63: 2690–2701. doi:10.2337/db13-1863.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scazzocchio, B., R. Varì, M. D’Archivio, C. Santangelo, C. Filesi, C. Giovannini, and R. Masella. 2009. Oxidized LDL impair adipocyte response to insulin by activating serine/threonine kinases. Journal of Lipid Research 50: 832–845. doi:10.1194/jlr.M800402-JLR200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaeffer, H.J., and M.J. Weber. 1999. Mitogen-activated protein kinases: Specific messages from ubiquitous messengers. Molecular and Cellular Biology 19: 2435–2444.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schattenberg, J.M., R. Singh, Y. Wang, J.H. Lefkowitch, R.M. Rigoli, P.E. Scherer, and M.J. Czaja. 2006. JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology (Baltimore, Md.) 43: 163–172. doi:10.1002/hep.20999.

    Article  CAS  Google Scholar 

  • Schröder, M., and R.J. Kaufman. 2005. ER stress and the unfolded protein response. Mutation Research 569: 29–63. doi:10.1016/j.mrfmmm.2004.06.056.

    Article  CAS  PubMed  Google Scholar 

  • Senapedis, W.T., C.J. Kennedy, P.M. Boyle, and P.A. Silver. 2011. Whole genome siRNA cell-based screen links mitochondria to Akt signaling network through uncoupling of electron transport chain. Molecular Biology of the Cell 22: 1791–1805. doi:10.1091/mbc.E10-10-0854.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw, R.J. 2009. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiologica (Oxford, England) 196: 65–80. doi:10.1111/j.1748-1716.2009.01972.x.

    Article  CAS  Google Scholar 

  • Shi, H., M.V. Kokoeva, K. Inouye, I. Tzameli, H. Yin, and J.S. Flier. 2006. TLR4 links innate immunity and fatty acid-induced insulin resistance. The Journal of Clinical Investigation 116: 3015–3025. doi:10.1172/JCI28898.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shoelson, S.E., J. Lee, and A.B. Goldfine. 2006. Inflammation and insulin resistance. The Journal of Clinical Investigation 116: 1793–1801. doi:10.1172/JCI29069.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shrestha, Y.B., C.H. Vaughan, B.J. Smith, C.K. Song, D.J. Baro, and T.J. Bartness. 2010. Central melanocortin stimulation increases phosphorylated perilipin A and hormone-sensitive lipase in adipose tissues. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 299: R140–R149. doi:10.1152/ajpregu.00535.2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song, W.-J., E.-A.C. Song, M.-S. Jung, S.-H. Choi, H.-H. Baik, B.K. Jin, J.H. Kim, and S.-H. Chung. 2015. Phosphorylation and inactivation of glycogen synthase kinase 3β (GSK3β) by dual-specificiy tyrosine phosphorylation-regulated kinase 1A (Dyrk1A). The Journal of Biological Chemistry 290: 2321–2333. doi:10.1074/jbc.M114.594952.

    Article  CAS  PubMed  Google Scholar 

  • Stretton, C., A. Evans, and H.S. Hundal. 2010. Cellular depletion of atypical PKC{lambda} is associated with enhanced insulin sensitivity and glucose uptake in L6 rat skeletal muscle cells. American Journal of Physiology. Endocrinology and Metabolism 299: E402–E412. doi:10.1152/ajpendo.00171.2010.

    Article  CAS  PubMed  Google Scholar 

  • Stuart, C.A., M.E.A. Howell, B.M. Cartwright, M.P. McCurry, M.L. Lee, M.W. Ramsey, and M.H. Stone. 2014. Insulin resistance and muscle insulin receptor substrate-1 serine hyperphosphorylation. Physiological Reports 2. doi:10.14814/phy2.12236

  • Subramani, S., K. Raja, and J. Natarajan. 2014. ProNormz—An integrated approach for human proteins and protein kinases normalization. Journal of Biomedical Informatics 47: 131–138. doi:10.1016/j.jbi.2013.10.003.

    Article  PubMed  Google Scholar 

  • Sun, C., L. Tian, J. Nie, H. Zhang, X. Han, and Y. Shi. 2012. Inactivation of MARK4, an AMP-activated protein kinase (AMPK)-related kinase, leads to insulin hypersensitivity and resistance to diet-induced obesity. The Journal of Biological Chemistry 287: 38305–38315. doi:10.1074/jbc.M112.388934.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Talior, I., M. Yarkoni, N. Bashan, and H. Eldar-Finkelman. 2003. Increased glucose uptake promotes oxidative stress and PKC-delta activation in adipocytes of obese, insulin-resistant mice. American Journal of Physiology. Endocrinology and Metabolism 285: E295–E302. doi:10.1152/ajpendo.00044.2003.

    Article  CAS  PubMed  Google Scholar 

  • Tao, Y.-X. 2009. Mutations in melanocortin-4 receptor and human obesity. Progress in Molecular Biology and Translational Science 88: 173–204. doi:10.1016/S1877-1173(09)88006-X.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2010. The melanocortin-4 receptor: Physiology, pharmacology, and pathophysiology. Endocrine Reviews 31: 506–543. doi:10.1210/er.2009-0037.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor, S.S., C. Kim, D. Vigil, N.M. Haste, J. Yang, J. Wu, and G.S. Anand. 2005. Dynamics of signaling by PKA. Biochimica et Biophysica Acta 1754: 25–37. doi:10.1016/j.bbapap.2005.08.024.

    Article  CAS  PubMed  Google Scholar 

  • Teske, B.F., S.A. Wek, P. Bunpo, J.K. Cundiff, J.N. McClintick, T.G. Anthony, and R.C. Wek. 2011. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Molecular Biology of the Cell 22: 4390–4405. doi:10.1091/mbc.E11-06-0510.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Theodosiou, A., and A. Ashworth. 2002. MAP kinase phosphatases. Genome Biol. 26: 3(7):REVIEWS3009).

    Google Scholar 

  • Tournier, C., C. Dong, T.K. Turner, S.N. Jones, R.A. Flavell, and R.J. Davis. 2001. MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes & Development 15: 1419–1426. doi:10.1101/gad.888501.

    Article  CAS  Google Scholar 

  • Tsukumo, D.M.L., M.A. Carvalho-Filho, J.B.C. Carvalheira, P.O. Prada, S.M. Hirabara, A.A. Schenka, E.P. Araújo, J. Vassallo, R. Curi, L.A. Velloso, and M.J.A. Saad. 2007. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56: 1986–1998. doi:10.2337/db06-1595.

    Article  CAS  PubMed  Google Scholar 

  • Tuncman, G., J. Hirosumi, G. Solinas, L. Chang, M. Karin, and G.S. Hotamisligil. 2006. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America 103: 10741–10746. doi:10.1073/pnas.0603509103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Um, S.H., D. D’Alessio, and G. Thomas. 2006. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metabolism 3: 393–402. doi:10.1016/j.cmet.2006.05.003.

    Article  CAS  PubMed  Google Scholar 

  • Uysal, K.T., S.M. Wiesbrock, M.W. Marino, and G.S. Hotamisligil. 1997. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389: 610–614. doi:10.1038/39335.

    Article  CAS  PubMed  Google Scholar 

  • Valenti, L., R. Rametta, P. Dongiovanni, M. Maggioni, A.L. Fracanzani, M. Zappa, E. Lattuada, G. Roviaro, and S. Fargion. 2008. Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis. Diabetes 57: 1355–1362. doi:10.2337/db07-0714.

    Article  CAS  PubMed  Google Scholar 

  • Vanhaesebroeck, B., and D.R. Alessi. 2000. The PI3K-PDK1 connection: More than just a road to PKB. The Biochemical Journal 346(Pt 3): 561–576.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vila-Bedmar, R., M. Lorenzo, and S. Fernández-Veledo. 2010. Adenosine 5’-monophosphate-activated protein kinase-mammalian target of rapamycin cross talk regulates brown adipocyte differentiation. Endocrinology 151: 980–992. doi:10.1210/en.2009-0810.

    Article  CAS  PubMed  Google Scholar 

  • Volmer, R., K. van der Ploeg, and D. Ron. 2013. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proceedings of the National Academy of Sciences of the United States of America 110: 4628–4633. doi:10.1073/pnas.1217611110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weston, C.R., and R.J. Davis. 2007. The JNK signal transduction pathway. Current Opinion in Cell Biology 19: 142–149. doi:10.1016/j.ceb.2007.02.001.

    Article  CAS  PubMed  Google Scholar 

  • White, M.F. 2003. Insulin signaling in health and disease. Science 302: 1710–1711. doi:10.1126/science.1092952.

    Article  CAS  PubMed  Google Scholar 

  • Winnay, J.N., and C.R. Kahn. 2011. PI 3-kinase regulatory subunits as regulators of the unfolded protein response. Methods in Enzymology 490: 147–158. doi:10.1016/B978-0-12-385114-7.00009-X.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu, J.J., R.J. Roth, E.J. Anderson, E.-G. Hong, M.-K. Lee, C.S. Choi, P.D. Neufer, G.I. Shulman, J.K. Kim, and A.M. Bennett. 2006. Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metabolism 4: 61–73. doi:10.1016/j.cmet.2006.05.010.

    Article  CAS  PubMed  Google Scholar 

  • Xu, H., M. Dembski, Q. Yang, D. Yang, A. Moriarty, O. Tayber, H. Chen, R. Kapeller, and L.A. Tartaglia. 2003. Dual specificity mitogen-activated protein (MAP) kinase phosphatase-4 plays a potential role in insulin resistance. The Journal of Biological Chemistry 278: 30187–30192. doi:10.1074/jbc.M302010200.

    Article  CAS  PubMed  Google Scholar 

  • Xue, B., Z. Yang, X. Wang, and H. Shi. 2012. Omega-3 polyunsaturated fatty acids antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway. PLoS One 7: e45990. doi:10.1371/journal.pone.0045990.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang, C.-Y., C.-H. Chang, Y.-L. Yu, T.-C.E. Lin, S.-A. Lee, C.-C. Yen, J.-M. Yang, J.-M. Lai, Y.-R. Hong, T.-L. Tseng, K.-M. Chao, and C.-Y.F. Huang. 2008. PhosphoPOINT: A comprehensive human kinase interactome and phospho-protein database. Bioinformatics (Oxford, England) 24: i14–i20. doi:10.1093/bioinformatics/btn297.

    Article  Google Scholar 

  • Yuan, M., N. Konstantopoulos, J. Lee, L. Hansen, Z.W. Li, M. Karin, and S.E. Shoelson. 2001. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293: 1673–1677. doi:10.1126/science.1061620.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, H., X. Zhang, X. Huang, Y. Lu, W. Tang, Y. Man, S. Wang, J. Xi, and J. Li. 2010. NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of β-cells via JNK, p38 MAPK and p53 pathways. PLoS One 5: e15726. doi:10.1371/journal.pone.0015726.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, Y., M. Xu, S. Zhang, L. Yan, C. Yang, W. Lu, Y. Li, and H. Cheng. 2007. The role of G protein-coupled receptor 40 in lipoapoptosis in mouse beta-cell line NIT-1. Journal of Molecular Endocrinology 38: 651–661. doi:10.1677/JME-06-0048.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., A. Xu, S.K. Chung, J.H.B. Cresser, G. Sweeney, R.L.C. Wong, A. Lin, and K.S.L. Lam. 2011. Selective inactivation of c-Jun NH2-terminal kinase in adipose tissue protects against diet-induced obesity and improves insulin sensitivity in both liver and skeletal muscle in mice. Diabetes 60: 486–495. doi:10.2337/db10-0650.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, W., Q. Wang, P. Song, and M.-H. Zou. 2013. Liver kinase b1 is required for white adipose tissue growth and differentiation. Diabetes 62: 2347–2358. doi:10.2337/db12-1229.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao, X., I.R. León, S. Bak, M. Mogensen, K. Wrzesinski, K. Højlund, and O.N. Jensen. 2011. Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Molecular & Cellular Proteomics: MCP 10: M110.000299. doi:10.1074/mcp.M110.000299.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., D. Feng, Q. Wang, A. Abdulla, X.-J. Xie, J. Zhou, Y. Sun, E.S. Yang, L.-P. Liu, B. Vaitheesvaran, L. Bridges, I.J. Kurland, R. Strich, J.-Q. Ni, C. Wang, J. Ericsson, J.E. Pessin, J.-Y. Ji, and F. Yang. 2012. Regulation of lipogenesis by cyclin-dependent kinase 8-mediated control of SREBP-1. The Journal of Clinical Investigation 122: 2417–2427. doi:10.1172/JCI61462.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng, C.F., and K.L. Guan. 1993. Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2. The Journal of Biological Chemistry 268: 11435–11439.

    CAS  PubMed  Google Scholar 

  • Zhu, J.-G., L. Xia, C.-B. Ji, C.-M. Zhang, G.-Z. Zhu, C.-M. Shi, L. Chen, D.-N. Qin, and X.-R. Guo. 2012. Differential DNA methylation status between human preadipocytes and mature adipocytes. Cell Biochemistry and Biophysics 63: 1–15. doi:10.1007/s12013-012-9336-3.

    Article  CAS  PubMed  Google Scholar 

  • Zolotnik, I.A., T.Y. Figueroa, and B.B. Yaspelkis. 2012. Insulin receptor and IRS-1 co-immunoprecipitation with SOCS-3, and IKKα/β phosphorylation are increased in obese Zucer rat skeletal muscle. Life Sciences 91: 816–822. doi:10.1016/j.lfs.2012.08.038.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zoncu, R., A. Efeyan, and D.M. Sabatini. 2011. mTOR: From growth signal integration to cancer, diabetes and ageing. Nature Reviews. Molecular Cell Biology 12: 21–35. doi:10.1038/nrm3025.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atilla Engin M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Engin, A. (2017). Human Protein Kinases and Obesity. In: Engin, A., Engin, A. (eds) Obesity and Lipotoxicity. Advances in Experimental Medicine and Biology, vol 960. Springer, Cham. https://doi.org/10.1007/978-3-319-48382-5_5

Download citation

Publish with us

Policies and ethics