Skip to main content

MicroRNA and Adipogenesis

  • Chapter
  • First Online:
Obesity and Lipotoxicity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 960))

Abstract

In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective microRNAs (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block expression of master regulators of adipogenesis. Additionally, specific miRNAs have been implicated in adipocyte differentiation and mature adipocyte functions. While, each miRNA targets multiple mRNAs, which may coordinate or antagonize each other’s functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. In this respect, development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity and insulin resistance are effectively controlled by miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi, T., T. Toishi, H. Wu, T. Kamiya, and H. Hara. 2009. Expression of extracellular superoxide dismutase during adipose differentiation in 3T3-L1 cells. Redox Report 14: 34–40. doi:10.1179/135100009X392467.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, R., A. Al-Mass, V. Atizado, A. Al-Hubail, F. Al-Ghimlas, M. Al-Arouj, A. Bennakhi, S. Dermime, and K. Behbehani. 2012. Elevated expression of the toll like receptors 2 and 4 in obese individuals: Its significance for obesity-induced inflammation. Journal of Inflammation (London) 9: 48. doi:10.1186/1476-9255-9-48.

    Article  CAS  Google Scholar 

  • Alexander, R., H. Lodish, and L. Sun. 2011. MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opinion on Therapeutic Targets 15: 623–636. doi:10.1517/14728222.2011.561317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arner, E., N. Mejhert, A. Kulyté, P.J. Balwierz, M. Pachkov, M. Cormont, S. Lorente-Cebrián, A. Ehrlund, J. Laurencikiene, P. Hedén, K. Dahlman-Wright, J.-F. Tanti, Y. Hayashizaki, M. Rydén, I. Dahlman, E. van Nimwegen, C.O. Daub, and P. Arner. 2012. Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 61: 1986–1993. doi:10.2337/db11-1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel, D.P. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2009. MicroRNAs: Target recognition and regulatory functions. Cell 136: 215–233. doi:10.1016/j.cell.2009.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belarbi, Y., N. Mejhert, S. Lorente-Cebrián, I. Dahlman, P. Arner, M. Rydén, and A. Kulyté. 2015. MicroRNA-193b Controls Adiponectin Production in Human White Adipose Tissue. The Journal of Clinical Endocrinology and Metabolism 100: E1084–E1088. doi:10.1210/jc.2015-1530.

    Article  PubMed  CAS  Google Scholar 

  • Bork, S., P. Horn, M. Castoldi, I. Hellwig, A.D. Ho, and W. Wagner. 2011. Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371. Journal of Cellular Physiology 226: 2226–2234. doi:10.1002/jcp.22557.

    Article  CAS  PubMed  Google Scholar 

  • Brunet, A., A. Bonni, M.J. Zigmond, M.Z. Lin, P. Juo, L.S. Hu, M.J. Anderson, K.C. Arden, J. Blenis, and M.E. Greenberg. 1999. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857–868.

    Article  CAS  PubMed  Google Scholar 

  • Chang, C.-L., L.-C. Au, S.-W. Huang, C. Fai Kwok, L.-T. Ho, and C.-C. Juan. 2011. Insulin up-regulates heme oxygenase-1 expression in 3 T3-L1 adipocytes via PI3-kinase- and PKC-dependent pathways and heme oxygenase-1-associated microRNA downregulation. Endocrinology 152: 384–393. doi:10.1210/en.2010-0493.

    Article  CAS  PubMed  Google Scholar 

  • Chen, T., Z. Huang, L. Wang, Y. Wang, F. Wu, S. Meng, and C. Wang. 2009. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovascular Research 83: 131–139. doi:10.1093/cvr/cvp121.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., J. Song, J. Cui, J. Hou, X. Zheng, C. Li, and L. Liu. 2013. microRNAs regulate adipocyte differentiation. Cell Biology International 37: 533–546. doi:10.1002/cbin.10063.

    Article  CAS  PubMed  Google Scholar 

  • Choi, S.-E., T. Fu, S. Seok, D.-H. Kim, E. Yu, K.-W. Lee, Y. Kang, X. Li, B. Kemper, and J.K. Kemper. 2013. Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell 12: 1062–1072. doi:10.1111/acel.12135.

    Article  CAS  PubMed  Google Scholar 

  • Choy, L., and R. Derynck. 2003. Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. The Journal of Biological Chemistry 278: 9609–9619. doi:10.1074/jbc.M212259200.

    Article  CAS  PubMed  Google Scholar 

  • Choy, L., J. Skillington, and R. Derynck. 2000. Roles of autocrine TGF-beta receptor and Smad signaling in adipocyte differentiation. The Journal of Cell Biology 149: 667–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cioffi, M., M. Vallespinos-Serrano, S.M. Trabulo, P.J. Fernandez-Marcos, A.N. Firment, B.N. Vazquez, C.R. Vieira, F. Mulero, J.A. Camara, U.P. Cronin, M. Perez, J. Soriano, B.G. Galvez, A. Castells-Garcia, V. Haage, D. Raj, D. Megias, S. Hahn, L. Serrano, A. Moon, A. Aicher, and C. Heeschen. 2015. MiR-93 Controls Adiposity via Inhibition of Sirt7 and Tbx3. Cell Reports 12: 1594–1605. doi:10.1016/j.celrep.2015.08.006.

    Article  CAS  PubMed  Google Scholar 

  • Clouthier, D.E., S.A. Comerford, and R.E. Hammer. 1997. Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGF-beta1 transgenic mice. The Journal of Clinical Investigation 100: 2697–2713. doi:10.1172/JCI119815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristancho, A.G., and M.A. Lazar. 2011. Forming functional fat: A growing understanding of adipocyte differentiation. Nature Reviews. Molecular Cell Biology 12: 722–734. doi:10.1038/nrm3198.

    Article  CAS  PubMed  Google Scholar 

  • Das, S.K., E. Stadelmeyer, S. Schauer, A. Schwarz, H. Strohmaier, T. Claudel, R. Zechner, G. Hoefler, and P.W. Vesely. 2015. Micro RNA-124a regulates lipolysis via adipose triglyceride lipase and comparative gene identification 58. International Journal of Molecular Sciences 16: 8555–8568. doi:10.3390/ijms16048555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Ferranti, S., and D. Mozaffarian. 2008. The perfect storm: Obesity, adipocyte dysfunction, and metabolic consequences. Clinical Chemistry 54: 945–955. doi:10.1373/clinchem.2007.100156.

    Article  PubMed  CAS  Google Scholar 

  • Deiuliis, J.A. 2016. MicroRNAs as regulators of metabolic disease: Pathophysiologic significance and emerging role as biomarkers and therapeutics. International Journal of Obesity 2005(40): 88–101. doi:10.1038/ijo.2015.170.

    Article  CAS  Google Scholar 

  • Doench, J.G., C.P. Petersen, and P.A. Sharp. 2003. siRNAs can function as miRNAs. Genes & Development 17: 438–442. doi:10.1101/gad.1064703.

    Article  CAS  Google Scholar 

  • Dong, P., Y. Mai, Z. Zhang, L. Mi, G. Wu, G. Chu, G. Yang, and S. Sun. 2014. MiR-15a/b promote adipogenesis in porcine pre-adipocyte via repressing FoxO1. Acta Biochimica et Biophysica Sinica 46: 565–571. doi:10.1093/abbs/gmu043.

    Article  CAS  PubMed  Google Scholar 

  • Dooley, J., J.E. Garcia-Perez, J. Sreenivasan, S.M. Schlenner, R. Vangoitsenhoven, A.S. Papadopoulou, L. Tian, S. Schonefeldt, L. Serneels, C. Deroose, K.A. Staats, B. Van der Schueren, B. De Strooper, O.P. McGuinness, C. Mathieu, and A. Liston. 2016. The microRNA-29 family dictates the balance between homeostatic and pathological glucose handling in diabetes and obesity. Diabetes 65: 53–61. doi:10.2337/db15-0770.

    Article  CAS  PubMed  Google Scholar 

  • Dowell, P., T.C. Otto, S. Adi, and M.D. Lane. 2003. Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. The Journal of Biological Chemistry 278: 45485–45491. doi:10.1074/jbc.M309069200.

    Article  CAS  PubMed  Google Scholar 

  • Esau, C., X. Kang, E. Peralta, E. Hanson, E.G. Marcusson, L.V. Ravichandran, Y. Sun, S. Koo, R.J. Perera, R. Jain, N.M. Dean, S.M. Freier, C.F. Bennett, B. Lollo, and R. Griffey. 2004. MicroRNA-143 regulates adipocyte differentiation. The Journal of Biological Chemistry 279: 52361–52365. doi:10.1074/jbc.C400438200.

    Article  CAS  PubMed  Google Scholar 

  • Estep, J.M., Z. Goodman, H. Sharma, E. Younossi, H. Elarainy, A. Baranova, and Z. Younossi. 2015. Adipocytokine expression associated with miRNA regulation and diagnosis of NASH in obese patients with NAFLD. Liver International 35: 1367–1372. doi:10.1111/liv.12555.

    Article  CAS  PubMed  Google Scholar 

  • Fan, W., H. Morinaga, J.J. Kim, E. Bae, N.J. Spann, S. Heinz, C.K. Glass, and J.M. Olefsky. 2010. FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages. The EMBO Journal 29: 4223–4236. doi:10.1038/emboj.2010.268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman, R.C., K.K.-H. Farh, C.B. Burge, and D.P. Bartel. 2009. Most mammalian mRNAs are conserved targets of microRNAs. Genome Research 19: 92–105. doi:10.1101/gr.082701.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuhashi, M., and G.S. Hotamisligil. 2008. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nature Reviews. Drug Discovery 7: 489–503. doi:10.1038/nrd2589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge, Q., S. Brichard, X. Yi, and Q. Li. 2014. microRNAs as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome. Journal of Immunology Research 2014: 987285. doi:10.1155/2014/987285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerin, I., G.T. Bommer, C.S. McCoin, K.M. Sousa, V. Krishnan, and O.A. MacDougald. 2010. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. American Journal of Physiology. Endocrinology and Metabolism 299: E198–E206. doi:10.1152/ajpendo.00179.2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gharipour, M., and M. Sadeghi. 2013. Pivotal role of microRNA-33 in metabolic syndrome: A systematic review. ARYA Atherosclerosis 9: 372–376.

    PubMed  PubMed Central  Google Scholar 

  • Gilad, S., E. Meiri, Y. Yogev, S. Benjamin, D. Lebanony, N. Yerushalmi, H. Benjamin, M. Kushnir, H. Cholakh, N. Melamed, Z. Bentwich, M. Hod, Y. Goren, and A. Chajut. 2008. Serum microRNAs are promising novel biomarkers. PLoS One 3: e3148. doi:10.1371/journal.pone.0003148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guduric-Fuchs, J., A. O’Connor, B. Camp, C.L. O’Neill, R.J. Medina, and D.A. Simpson. 2012. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 13: 357. doi:10.1186/1471-2164-13-357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafson, B., S. Gogg, S. Hedjazifar, L. Jenndahl, A. Hammarstedt, and U. Smith. 2009. Inflammation and impaired adipogenesis in hypertrophic obesity in man. American Journal of Physiology. Endocrinology and Metabolism 297: E999–E1003. doi:10.1152/ajpendo.00377.2009.

    Article  CAS  PubMed  Google Scholar 

  • Hansson, B., A. Medina, C. Fryklund, M. Fex, and K.G. Stenkula. 2016. Serotonin (5-HT) and 5-HT2A receptor agonists suppress lipolysis in primary rat adipose cells. Biochemical and Biophysical Research Communications 474: 357–363. doi:10.1016/j.bbrc.2016.04.110.

    Article  CAS  PubMed  Google Scholar 

  • He, A., L. Zhu, N. Gupta, Y. Chang, and F. Fang. 2007. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3 T3-L1 adipocytes. Molecular Endocrinology (Baltimore, Md.) 21: 2785–2794. doi:10.1210/me.2007-0167.

    Article  CAS  Google Scholar 

  • He, H., K. Chen, F. Wang, L. Zhao, X. Wan, L. Wang, and Z. Mo. 2015. miR-204-5p promotes the adipogenic differentiation of human adipose-derived mesenchymal stem cells by modulating DVL3 expression and suppressing Wnt/β-catenin signaling. International Journal of Molecular Medicine 35: 1587–1595. doi:10.3892/ijmm.2015.2160.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heilbronn, L.K., and L.V. Campbell. 2008. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Current Pharmaceutical Design 14: 1225–1230.

    Article  CAS  PubMed  Google Scholar 

  • Heneghan, H.M., N. Miller, O.J. McAnena, T. O’Brien, and M.J. Kerin. 2011. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. The Journal of Clinical Endocrinology and Metabolism 96: E846–E850. doi:10.1210/jc.2010-2701.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh, C.-H., C.-S. Rau, S.-C. Wu, J.C.-S. Yang, Y.-C. Wu, T.-H. Lu, S.-L. Tzeng, C.-J. Wu, and C.-W. Lin. 2015. Weight-reduction through a low-fat diet causes differential expression of circulating microRNAs in obese C57BL/6 mice. BMC Genomics 16: 699. doi:10.1186/s12864-015-1896-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang, R., G. Hu, B. Lin, Z. Lin, C. Sun. 2010. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. Journal of Investigative Medicine 58: 961–967. doi:10.231/JIM.0b013e3181ff46d7.

    Google Scholar 

  • Huang, T.-C., N.A. Sahasrabuddhe, M.-S. Kim, D. Getnet, Y. Yang, J.M. Peterson, B. Ghosh, R. Chaerkady, S.D. Leach, L. Marchionni, G.W. Wong, and A. Pandey. 2012. Regulation of lipid metabolism by Dicer revealed through SILAC mice. Journal of Proteome Research 11: 2193–2205. doi:10.1021/pr2009884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isa, S.A., J.S. Ruffino, M. Ahluwalia, A.W. Thomas, K. Morris, and R. Webb. 2011. M2 macrophages exhibit higher sensitivity to oxLDL-induced lipotoxicity than other monocyte/macrophage subtypes. Lipids in Health and Disease 10: 229. doi:10.1186/1476-511X-10-229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isakson, P., A. Hammarstedt, B. Gustafson, and U. Smith. 2009. Impaired preadipocyte differentiation in human abdominal obesity: Role of Wnt, tumor necrosis factor-alpha, and inflammation. Diabetes 58: 1550–1557. doi:10.2337/db08-1770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izquierdo-Lahuerta, A., C. Martínez-García, and G. Medina-Gómez. 2016. Lipotoxicity as a trigger factor of renal disease. Journal of Nephrology 29: 603–610. doi:10.1007/s40620-016-0278-5.

    Article  CAS  PubMed  Google Scholar 

  • Kahn, S.E., R.L. Hull, and K.M. Utzschneider. 2006. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444: 840–846. doi:10.1038/nature05482.

    Article  CAS  PubMed  Google Scholar 

  • Kajimoto, K., H. Naraba, and N. Iwai. 2006. MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA 12: 1626–1632. doi:10.1261/rna.7228806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, M., L.M. Yan, Y.M. Li, W.Y. Zhang, H. Wang, A.Z. Tang, and H.S. Ou. 2013a. Inhibitory effect of microRNA-24 on fatty acid-binding protein expression on 3T3-L1 adipocyte differentiation. Genetics and Molecular Research 12: 5267–5277. doi:10.4238/2013.November.7.1.

    Article  CAS  PubMed  Google Scholar 

  • Kang, M., L.-M. Yan, W.-Y. Zhang, Y.-M. Li, A.-Z. Tang, and H.-S. Ou. 2013b. Role of microRNA-21 in regulating 3T3-L1 adipocyte differentiation and adiponectin expression. Molecular Biology Reports 40: 5027–5034. doi:10.1007/s11033-013-2603-6.

    Article  CAS  PubMed  Google Scholar 

  • Kato, Y., R.I. Tapping, S. Huang, M.H. Watson, R.J. Ulevitch, and J.D. Lee. 1998. Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor. Nature 395: 713–716. doi:10.1038/27234.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K., B. Perroud, G. Espinal, D. Kachinskas, I. Austrheim-Smith, B.M. Wolfe, and C.H. Warden. 2008a. Genes and networks expressed in perioperative omental adipose tissue are correlated with weight loss from Roux-en-Y gastric bypass. International Journal of Obesity 2005(32): 1395–1406. doi:10.1038/ijo.2008.106.

    Article  CAS  Google Scholar 

  • Kim, D.H., A.P. Burgess, M. Li, P.L. Tsenovoy, F. Addabbo, J.A. McClung, N. Puri, and N.G. Abraham. 2008b. Heme oxygenase-mediated increases in adiponectin decrease fat content and inflammatory cytokines tumor necrosis factor-alpha and interleukin-6 in Zucker rats and reduce adipogenesis in human mesenchymal stem cells. The Journal of Pharmacology and Experimental Therapeutics 325: 833–840. doi:10.1124/jpet.107.135285.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.J., S.J. Hwang, Y.C. Bae, and J.S. Jung. 2009. MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 27: 3093–3102. doi:10.1002/stem.235.

    CAS  PubMed  Google Scholar 

  • Kim, S.Y., A.Y. Kim, H.W. Lee, Y.H. Son, G.Y. Lee, J.-W. Lee, Y.S. Lee, and J.B. Kim. 2010. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochemical and Biophysical Research Communications 392: 323–328. doi:10.1016/j.bbrc.2010.01.012.

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita, M., K. Ono, T. Horie, K. Nagao, H. Nishi, Y. Kuwabara, R. Takanabe-Mori, K. Hasegawa, T. Kita, and T. Kimura. 2010. Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5. Molecular Endocrinology 24: 1978–1987. doi:10.1210/me.2010-0054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klöting, N., S. Berthold, P. Kovacs, M.R. Schön, M. Fasshauer, K. Ruschke, M. Stumvoll, and M. Blüher. 2009. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 4: e4699. doi:10.1371/journal.pone.0004699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuwabara, Y., T. Horie, O. Baba, S. Watanabe, M. Nishiga, S. Usami, M. Izuhara, T. Nakao, T. Nishino, K. Otsu, T. Kita, T. Kimura, and K. Ono. 2015. MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway. Circulation Research 116: 279–288. doi:10.1161/CIRCRESAHA.116.304707.

    Article  CAS  PubMed  Google Scholar 

  • Lass, A., R. Zimmermann, M. Oberer, and R. Zechner. 2011. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Progress in Lipid Research 50: 14–27. doi:10.1016/j.plipres.2010.10.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, E.K., M.J. Lee, K. Abdelmohsen, W. Kim, M.M. Kim, S. Srikantan, J.L. Martindale, E.R. Hutchison, H.H. Kim, B.S. Marasa, R. Selimyan, J.M. Egan, S.R. Smith, S.K. Fried, and M. Gorospe. 2011. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. Molecular and Cellular Biology 31: 626–638. doi:10.1128/MCB.00894-10.

    Article  CAS  PubMed  Google Scholar 

  • Lefterova, M.I., and M.A. Lazar. 2009. New developments in adipogenesis. Trends in Endocrinology and Metabolism 20: 107–114. doi:10.1016/j.tem.2008.11.005.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, B.P., C.B. Burge, and D.P. Bartel. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20. doi:10.1016/j.cell.2004.12.035.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., D.H. Kim, P.L. Tsenovoy, S.J. Peterson, R. Rezzani, L.F. Rodella, W.S. Aronow, S. Ikehara, and N.G. Abraham. 2008. Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance. Diabetes 57: 1526–1535. doi:10.2337/db07-1764.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., M. Xue, J. Xu, and X. Qin. 2016. MiR-301a is involved in adipocyte dysfunction during obesity-related inflammation via suppression of PPARγ. Pharmazie 71: 84–88.

    PubMed  Google Scholar 

  • Lin, Q., Z. Gao, R.M. Alarcon, J. Ye, and Z. Yun. 2009. A role of miR-27 in the regulation of adipogenesis. The FEBS Journal 276: 2348–2358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Y.-Y., C.-F. Chou, M. Giovarelli, P. Briata, R. Gherzi, and C.-Y. Chen. 2014. KSRP and MicroRNA 145 are negative regulators of lipolysis in white adipose tissue. Molecular and Cellular Biology 34: 2339–2349. doi:10.1128/MCB.00042-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ling, H.-Y., H.-S. Ou, S.-D. Feng, X.-Y. Zhang, Q.-H. Tuo, L.-X. Chen, B.-Y. Zhu, Z.-P. Gao, C.-K. Tang, W.-D. Yin, L. Zhang, and D.-F. Liao. 2009. CHANGES IN microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes. Clinical and Experimental Pharmacology & Physiology 36: e32–e39. doi:10.1111/j.1440-1681.2009.05207.x.

    Article  CAS  Google Scholar 

  • Ling, H.-Y., G.-B. Wen, S.-D. Feng, Q.-H. Tuo, H.-S. Ou, C.H. Yao, B.-Y. Zhu, Z.-P. Gao, L. Zhang, and D.-F. Liao. 2011. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling. Clinical and Experimental Pharmacology & Physiology 38: 239–246. doi:10.1111/j.1440-1681.2011.05493.x.

    Article  CAS  Google Scholar 

  • Lumeng, C.N., J.L. Bodzin, and A.R. Saltiel. 2007. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. The Journal of Clinical Investigation 117: 175–184. doi:10.1172/JCI29881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinelli, R., C. Nardelli, V. Pilone, T. Buonomo, R. Liguori, I. Castanò, P. Buono, S. Masone, G. Persico, P. Forestieri, L. Pastore, and L. Sacchetti. 2010. miR-519d overexpression is associated with human obesity. Obesity (Silver Spring) 18: 2170–2176. doi:10.1038/oby.2009.474.

    Article  CAS  Google Scholar 

  • Mayr, B., and M. Montminy. 2001. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature Reviews. Molecular Cell Biology 2: 599–609. doi:10.1038/35085068.

    Article  CAS  PubMed  Google Scholar 

  • McGregor, R.A., and M.S. Choi. 2011. microRNAs in the regulation of adipogenesis and obesity. Current Molecular Medicine 11: 304–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molgat, A.S.D., A. Gagnon, C. Foster, and A. Sorisky. 2012. The activation state of macrophages alters their ability to suppress preadipocyte apoptosis. The Journal of Endocrinology 214: 21–29. doi:10.1530/JOE-12-0114.

    Article  CAS  PubMed  Google Scholar 

  • Mysore, R., Y. Zhou, S. Sädevirta, H. Savolainen-Peltonen, P.A. Nidhina Haridas, J. Soronen, M. Leivonen, A.-P. Sarin, P. Fischer-Posovszky, M. Wabitsch, H. Yki-Järvinen, and V.M. Olkkonen. 2016. MicroRNA-192* impairs adipocyte triglyceride storage. Biochimica et Biophysica Acta 1861: 342–351. doi:10.1016/j.bbalip.2015.12.019.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi, N., Y. Nakagawa, N. Tokushige, N. Aoki, T. Matsuzaka, K. Ishii, N. Yahagi, K. Kobayashi, S. Yatoh, A. Takahashi, H. Suzuki, O. Urayama, N. Yamada, and H. Shimano. 2009. The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochemical and Biophysical Research Communications 385: 492–496. doi:10.1016/j.bbrc.2009.05.058.

    Article  CAS  PubMed  Google Scholar 

  • Ng, R., H. Wu, H. Xiao, X. Chen, H. Willenbring, C.J. Steer, and G. Song. 2014. Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia. Hepatology 60: 554–564. doi:10.1002/hep.27153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, M.T.A., A. Chen, W.J. Lu, W. Fan, P.-P. Li, D.Y. Oh, and D. Patsouris. 2012. Regulation of chemokine and chemokine receptor expression by PPARγ in adipocytes and macrophages. PLoS One 7: e34976. doi:10.1371/journal.pone.0034976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa, R., C. Tanaka, M. Sato, H. Nagasaki, K. Sugimura, K. Okumura, Y. Nakagawa, and N. Aoki. 2010. Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. Biochemical and Biophysical Research Communications 398: 723–729. doi:10.1016/j.bbrc.2010.07.008.

    Article  CAS  PubMed  Google Scholar 

  • Ortega, F.J., and J.M. Fernández-Real. 2013. Inflammation in adipose tissue and fatty acid anabolism: When enough is enough! Hormone and Metabolic Research 45: 1009–1019. doi:10.1055/s-0033-1358690.

    Article  CAS  PubMed  Google Scholar 

  • Ortega, F.J., J.M. Moreno-Navarrete, G. Pardo, M. Sabater, M. Hummel, A. Ferrer, J.I. Rodriguez-Hermosa, B. Ruiz, W. Ricart, B. Peral, and J.M. Fernández-Real. 2010. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One 5: e9022. doi:10.1371/journal.pone.0009022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ortega, F.J., J.M. Mercader, V. Catalán, J.M. Moreno-Navarrete, N. Pueyo, M. Sabater, J. Gómez-Ambrosi, R. Anglada, J.A. Fernández-Formoso, W. Ricart, G. Frühbeck, and J.M. Fernández-Real. 2013. Targeting the circulating microRNA signature of obesity. Clinical Chemistry 59: 781–792. doi:10.1373/clinchem.2012.195776.

    Article  CAS  PubMed  Google Scholar 

  • Ortega, F.J., J.M. Mercader, J.M. Moreno-Navarrete, L. Nonell, E. Puigdecanet, J.I. Rodriquez-Hermosa, O. Rovira, G. Xifra, E. Guerra, M. Moreno, D. Mayas, N. Moreno-Castellanos, J.A. Fernández-Formoso, W. Ricart, F.J. Tinahones, D. Torrents, M.M. Malagón, and J.M. Fernández-Real. 2015. Surgery-induced weight loss is associated with the downregulation of genes targeted by microRNAs in adipose tissue. The Journal of Clinical Endocrinology and Metabolism 100: E1467–E1476. doi:10.1210/jc.2015-2357.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, A.C., J.A. Semon, D. Kaushal, R.P. O’Sullivan, J. Glowacki, J.M. Gimble, and B.A. Bunnell. 2011. MicroRNA profiling reveals age-dependent differential expression of nuclear factor κB and mitogen-activated protein kinase in adipose and bone marrow-derived human mesenchymal stem cells. Stem Cell Research & Therapy 2: 49. doi:10.1186/scrt90.

    Article  CAS  Google Scholar 

  • Parra, P., F. Serra, and A. Palou. 2010. Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice. PLoS One 5: e13005. doi:10.1371/journal.pone.0013005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng, Y., S. Yu, H. Li, H. Xiang, J. Peng, and S. Jiang. 2014. MicroRNAs: Emerging roles in adipogenesis and obesity. Cellular Signalling 26: 1888–1896. doi:10.1016/j.cellsig.2014.05.006.

    Article  CAS  PubMed  Google Scholar 

  • Prats-Puig, A., F.J. Ortega, J.M. Mercader, J.M. Moreno-Navarrete, M. Moreno, N. Bonet, W. Ricart, A. López-Bermejo, and J.M. Fernández-Real. 2013. Changes in circulating microRNAs are associated with childhood obesity. The Journal of Clinical Endocrinology and Metabolism 98: E1655–E1660. doi:10.1210/jc.2013-1496.

    Article  CAS  PubMed  Google Scholar 

  • Price, N.L., B. Holtrup, S.L. Kwei, M. Wabitsch, M. Rodeheffer, L. Bianchini, Y. Suárez, and C. Fernández-Hernando. 2016. SREBP-1c/microRNA 33b genomic loci control adipocyte differentiation. Molecular and Cellular Biology 36: 1180–1193. doi:10.1128/MCB.00745-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen, E.D., and O.A. MacDougald. 2006. Adipocyte differentiation from the inside out. Nature Reviews. Molecular Cell Biology 7: 885–896. doi:10.1038/nrm2066.

    Article  CAS  PubMed  Google Scholar 

  • Selbach, M., B. Schwanhäusser, N. Thierfelder, Z. Fang, R. Khanin, and N. Rajewsky. 2008. Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58–63. doi:10.1038/nature07228.

    Article  CAS  PubMed  Google Scholar 

  • Shan, T., P. Zhang, Q. Jiang, Y. Xiong, Y. Wang, and S. Kuang. 2016. Adipocyte-specific deletion of mTOR inhibits adipose tissue development and causes insulin resistance in mice. Diabetologia 59: 1995–2004. doi:10.1007/s00125-016-4006-4.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, H., M. Estep, A. Birerdinc, A. Afendy, A. Moazzez, H. Elariny, Z. Goodman, V. Chandhoke, A. Baranova, and Z.M. Younossi. 2013. Expression of genes for microRNA-processing enzymes is altered in advanced non-alcoholic fatty liver disease. Journal of Gastroenterology and Hepatology 28: 1410–1415. doi:10.1111/jgh.12268.

    Article  CAS  PubMed  Google Scholar 

  • Shi, C., M. Zhang, M. Tong, L. Yang, L. Pang, L. Chen, G. Xu, X. Chi, Q. Hong, Y. Ni, C. Ji, and X. Guo. 2015. miR-148a is associated with obesity and modulates adipocyte differentiation of mesenchymal stem cells through wnt signaling. Scientific Reports 5: 9930. doi:10.1038/srep09930.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi, C., F. Huang, X. Gu, M. Zhang, J. Wen, X. Wang, L. You, X. Cui, C. Ji, and X. Guo. 2016. Adipogenic miRNA and meta-signature miRNAs involved in human adipocyte differentiation and obesity. Oncotarget 7: 40830–40845. doi:10.18632/oncotarget.8518.

    PubMed  PubMed Central  Google Scholar 

  • Song, G., G. Xu, C. Ji, C. Shi, Y. Shen, L. Chen, L. Zhu, L. Yang, Y. Zhao, and X. Guo. 2014. The role of microRNA-26b in human adipocyte differentiation and proliferation. Gene 533: 481–487. doi:10.1016/j.gene.2013.10.011.

    Article  CAS  PubMed  Google Scholar 

  • Strum, J.C., J.H. Johnson, J. Ward, H. Xie, J. Feild, A. Hester, A. Alford, and K.M. Waters. 2009. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Molecular Endocrinology (Baltimore, Md.) 23: 1876–1884. doi:10.1210/me.2009-0117.

    Article  CAS  Google Scholar 

  • Sun, T., M. Fu, A.L. Bookout, S.A. Kliewer, and D.J. Mangelsdorf. 2009. MicroRNA let-7 regulates 3T3-L1 adipogenesis. Molecular Endocrinology (Baltimore, Md.) 23: 925–931. doi:10.1210/me.2008-0298.

    Article  CAS  Google Scholar 

  • Takahashi, Y., M. Satoh, Y. Minami, T. Tabuchi, T. Itoh, and M. Nakamura. 2010. Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: Effect of renin-angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clinical Science (London, England) 1979(119): 395–405. doi:10.1042/CS20100003.

    Article  CAS  Google Scholar 

  • Takanabe, R., K. Ono, Y. Abe, T. Takaya, T. Horie, H. Wada, T. Kita, N. Satoh, A. Shimatsu, and K. Hasegawa. 2008. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochemical and Biophysical Research Communications 376: 728–732. doi:10.1016/j.bbrc.2008.09.050.

    Article  CAS  PubMed  Google Scholar 

  • Tan, C.K., N. Leuenberger, M.J. Tan, Y.W. Yan, Y. Chen, R. Kambadur, W. Wahli, and N.S. Tan. 2011. Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet. Diabetes 60: 464–476. doi:10.2337/db10-0801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, H., C. Liu, X. Zou, W. Wu, C. Zhang, and D. Yuan. 2015. MiRNA-194 regulates palmitic acid-induced toll-like receptor 4 inflammatory responses in THP-1 cells. Nutrients 7: 3483–3496. doi:10.3390/nu7053483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbich, C., A. Kuehbacher, and S. Dimmeler. 2008. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovascular Research 79: 581–588. doi:10.1093/cvr/cvn156.

    Article  CAS  PubMed  Google Scholar 

  • Vanella, L., K. Sodhi, D.H. Kim, N. Puri, M. Maheshwari, T.D. Hinds, L. Bellner, D. Goldstein, S.J. Peterson, J.I. Shapiro, and N.G. Abraham. 2013. Increased heme-oxygenase 1 expression in mesenchymal stem cell-derived adipocytes decreases differentiation and lipid accumulation via upregulation of the canonical Wnt signaling cascade. Stem Cell Research & Therapy 4: 28. doi:10.1186/scrt176.

    Article  CAS  Google Scholar 

  • Vaughan, T., and L. Li. 2010. Molecular mechanism underlying the inflammatory complication of leptin in macrophages. Molecular Immunology 47: 2515–2518. doi:10.1016/j.molimm.2010.06.006.

    Article  CAS  PubMed  Google Scholar 

  • Villard, A., L. Marchand, C. Thivolet, and S. Rome. 2015. Diagnostic value of cell-free circulating microRNAs for obesity and type 2 diabetes: A meta-analysis. Journal of Molecular Biomarkers & Diagnosis 6: 251. doi:10.4172/2155-9929.1000251.

    Article  Google Scholar 

  • Vinnikov, I.A., K. Hajdukiewicz, J. Reymann, J. Beneke, R. Czajkowski, L.C. Roth, M. Novak, A. Roller, N. Dörner, V. Starkuviene, F.J. Theis, H. Erfle, G. Schütz, V. Grinevich, and W. Konopka. 2014. Hypothalamic miR-103 protects from hyperphagic obesity in mice. The Journal of Neuroscience 34: 10659–10674. doi:10.1523/JNEUROSCI.4251-13.2014.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., L. Xu, M. Xu, G. Liu, J. Xing, C. Sun, and H. Ding. 2015. Obesity-associated MiR-342-3p promotes adipogenesis of mesenchymal stem cells by suppressing CtBP2 and releasing C/EBPα from CtBP2 binding. Cellular Physiology and Biochemistry 35: 2285–2298. doi:10.1159/000374032.

    Article  CAS  PubMed  Google Scholar 

  • Whittaker, R., P.A. Loy, E. Sisman, E. Suyama, P. Aza-Blanc, R.S. Ingermanson, J.H. Price, and P.M. McDonough. 2010. Identification of MicroRNAs that control lipid droplet formation and growth in hepatocytes via high-content screening. Journal of Biomolecular Screening 15: 798–805. doi:10.1177/1087057110374991.

    Article  CAS  PubMed  Google Scholar 

  • Xie, X., J. Lu, E.J. Kulbokas, T.R. Golub, V. Mootha, K. Lindblad-Toh, E.S. Lander, and M. Kellis. 2005. Systematic discovery of regulatory motifs in human promoters and 3’ UTRs by comparison of several mammals. Nature 434: 338–345. doi:10.1038/nature03441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, H., B. Lim, and H.F. Lodish. 2009a. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58: 1050–1057. doi:10.2337/db08-1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, H., L. Sun, and H.F. Lodish. 2009b. Targeting microRNAs in obesity. Expert Opinion on Therapeutic Targets 13: 1227–1238. doi:10.1517/14728220903190707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, G., C. Ji, G. Song, C. Zhao, C. Shi, L. Song, L. Chen, L. Yang, F. Huang, L. Pang, N. Zhang, Y. Zhao, and X. Guo. 2015. MiR-26b modulates insulin sensitivity in adipocytes by interrupting the PTEN/PI3K/AKT pathway. International Journal of Obesity 2005(39): 1523–1530. doi:10.1038/ijo.2015.95.

    Article  CAS  Google Scholar 

  • Yang, Z., C. Bian, H. Zhou, S. Huang, S. Wang, L. Liao, and R.C. Zhao. 2011. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells and Development 20: 259–267. doi:10.1089/scd.2010.0072.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W.-M., H.-J. Jeong, S.-W. Park, and W. Lee. 2015. Obesity-induced miR-15b is linked causally to the development of insulin resistance through the repression of the insulin receptor in hepatocytes. Molecular Nutrition & Food Research 59: 2303–2314. doi:10.1002/mnfr.201500107.

    Article  CAS  Google Scholar 

  • Yeh, C.-L., I.-C. Cheng, Y.-C. Hou, W. Wang, and S.-L. Yeh. 2014. MicroRNA-125a-3p expression in abdominal adipose tissues is associated with insulin signalling gene expressions in morbid obesity: Observations in Taiwanese. Asia Pacific Journal of Clinical Nutrition 23: 331–337.

    CAS  PubMed  Google Scholar 

  • Yekta, S., I.-H. Shih, and D.P. Bartel. 2004. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304: 594–596. doi:10.1126/science.1097434.

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa, T., M.F. Karim, Y. Sato, T. Senokuchi, K. Miyata, T. Fukuda, C. Go, M. Tasaki, K. Uchimura, T. Kadomatsu, Z. Tian, C. Smolka, T. Sawa, M. Takeya, K. Tomizawa, Y. Ando, E. Araki, T. Akaike, T. Braun, Y. Oike, E. Bober, and K. Yamagata. 2014. SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metabolism 19: 712–721. doi:10.1016/j.cmet.2014.03.006.

    Article  CAS  PubMed  Google Scholar 

  • Zaragosi, L.-E., B. Wdziekonski, K.L. Brigand, P. Villageois, B. Mari, R. Waldmann, C. Dani, and P. Barbry. 2011. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biology 12: R64. doi:10.1186/gb-2011-12-7-r64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, M., W. Zhu, and Y. Li. 2014. Small molecule inhibitors of human adipocyte fatty acid binding protein (FABP4). Medicinal chemistry (Shāriqah (United Arab Emirates)) 10: 339–347.

    Article  CAS  Google Scholar 

  • Zhao, X., R. Mohan, S. Özcan, and X. Tang. 2012. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells. The Journal of Biological Chemistry 287: 31155–31164. doi:10.1074/jbc.M112.362632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang, G., C. Meng, X. Guo, P.S. Cheruku, L. Shi, H. Xu, H. Li, G. Wang, A.R. Evans, S. Safe, C. Wu, and B. Zhou. 2012. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation 125: 2892–2903. doi:10.1161/CIRCULATIONAHA.111.087817.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayse Basak Engin Ph.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Engin, A.B. (2017). MicroRNA and Adipogenesis. In: Engin, A., Engin, A. (eds) Obesity and Lipotoxicity. Advances in Experimental Medicine and Biology, vol 960. Springer, Cham. https://doi.org/10.1007/978-3-319-48382-5_21

Download citation

Publish with us

Policies and ethics