Skip to main content

Lipotoxicity-Related Hematological Disorders in Obesity

  • Chapter
  • First Online:
Obesity and Lipotoxicity

Abstract

Lipotoxicity can mediate endothelial dysfunction in obesity. Altered endothelial cell phenotype during the pathobiological course of the lipotoxicity may lead to the hemostatic abnormalities, which is a hallmark of several hematological disorders. Impaired hemostasis could also be directly related to the numerous metabolic diseases such as hypertension, diabetes and atherosclerosis. On the other hand, local hematopoietic bone marrow (BM) renin-angiotensin system (RAS) contributes to the development of atherosclerosis via acting on the lipotoxicity processes. Local BM RAS, principally an autocrine/ paracrine/ intracrinehematological system, is located at the crossroads of cellular regulation, molecular interactions and the lipotoxicity-mediated vascular endothelial dysfunction. The positive regulatory role of plasma LDL on AT1 receptor-mediated hematopoietic stem cell (HSC) differentiation and the production of pro-atherogenic monocytes had been described. LDL-regulated HSC function may explain in part hypercholesterolemia-induced inflammation as well as the anti-inflammatory and anti-atherosclerotic effects of AT1 receptor blockers. The role of local adipose tissue RAS is directly related to the pathogenesis of metabolic derangements in obesity. There may be a crosstalk between local BM RAS and local adipose tissue RAS at the genomics and transcriptomics levels. The aim of this chapter is to review hematological alterations propagating the pathological influences of lipotoxicity on the vascular endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd Alla, J., et al. 2010. Angiotensin-converting enzyme inhibition down-regulates the pro-atherogenic chemokine receptor 9 (CCR9)-chemokine ligand 25 (CCL25) axis. Journal of Biological Chemistry 285: 23494–23503.

    Article  Google Scholar 

  • Acar, K., Y. Beyazit, A. Sucak, et al. 2007. Alterations in the ‘local umbilical cord blood renin-angiotensin system’ during pre-eclampsia. Acta Obstetricia et Gynecologica Scandinavica 86: 1–7.

    Article  Google Scholar 

  • Ailhaud, G., A. Fukamizu, F. Massiera, R. Negrel, P. Saint-Marc, and M. Teboul. 2000. Angiotensinogen, angiotensin II and adipose tissue development. International Journal of Obesity and Related Metabolic Disorders 24: 33–35.

    Article  Google Scholar 

  • Aksu, S., Y. Beyazit, I.C. Haznedaroglu, et al. 2006. Over-expression of angiotensin-converting enzyme (CD 143) on leukemic blasts as a clue for the activated local bone marrow RAS in AML. Leukemia & Lymphoma 47: 891–896.

    Article  CAS  Google Scholar 

  • Arakawa, K., and H. Urata. 2000. Hypothesis regarding the pathophysiological role of alternative pathways of angiotensin II formation in atherosclerosis. Hypertension 36: 638–641.

    Article  CAS  PubMed  Google Scholar 

  • Aryan, M., A. Kepez, E. Atalar, et al. 2009. Association of plasma osteopontin levels with coronary calcification evaluated by tomographic coronary calcium scoring. Journal of Bone and Mineral Metabolism 27(5): 591–597.

    Article  CAS  PubMed  Google Scholar 

  • Atalar, E., I.C. Haznedaroglu, H. Kilic, et al. 2005. Increased soluble glycoprotein V concentration during the acute onset of unstable angina pectoris in association with chronic cigarette smoking. Platelets 16(6): 329–333.

    Article  CAS  PubMed  Google Scholar 

  • Barton, M., R. Carmona, H. Morawietz, L. d’Uscio, W. Goettsch, H. Hillen, C. Haudenschild, J. Krieger, K. Munter, T. Lattmann, T. Luscher, and S. Shaw. 2000. Obesity is associated with tissue-specific activation of renal angiotensin-converting enzyme in vivo: Evidence for a regulatory role of endothelin. Hypertension 35: 329–336.

    Article  CAS  PubMed  Google Scholar 

  • Becher, M.U., et al. 2010. Regeneration of the vascular compartment. Herz 35: 342–350.

    Article  CAS  PubMed  Google Scholar 

  • Becher, U.M., et al. 2011. Endothelial damage and regeneration: The role of the Renin Angiotensin-aldosterone system. Current Hypertension Reports 13: 86–92.

    Article  CAS  PubMed  Google Scholar 

  • Beyazit, Y., S. Aksu, I.C. Haznedaroglu, et al. 2007. Overexpression of the local bone marrow renin-angiotensin system in acute myeloid leukemia. Journal of the National Medical Association 99: 57–63.

    PubMed  PubMed Central  Google Scholar 

  • Beyazit, Y., T. Purnak, G.S. Guven, and I.C. Haznedaroglu. 2010. Local bone marrow Renin-Angiotensin system and atherosclerosis. Cardiology Research and Practice 2011: 714515. doi:10.4061/2011/714515.

    PubMed  PubMed Central  Google Scholar 

  • Beyazit, Y., M. Ibis, T. Purnak, et al. 2011. Elevated levels of circulating angiotensin converting enzyme in patients with hepatoportal sclerosis. Digestive Diseases and Sciences 56(7): 2160–2165. doi:10.1007/s10620-011-1580-7.

    Article  CAS  PubMed  Google Scholar 

  • Cassis, L.A., D.L. Rateri, H. Lu, and A. Daugherty. 2007. Bone marrow transplantation reveals that recipient AT1a receptors are required to initiate angiotensin Iıinduced atherosclerosis and aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology 27: 380–386.

    Article  CAS  PubMed  Google Scholar 

  • Cathcart, M.K. 2004. Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: Contributions to atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 24: 23–28.

    Article  CAS  PubMed  Google Scholar 

  • Coppo, M., et al. 2008. Angiotensin II upregulates renin-angiotensin system in human isolated T lymphocytes. Regulatory Peptides 151: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Crowley, S.D., et al. 2010. A role for angiotensin II Type 1 receptors on bone marrow-derived cells in the pathogenesis of angiotensin II-dependent hypertension. Hypertension 55: 99–U180.

    Article  CAS  PubMed  Google Scholar 

  • Dandona, P., S. Dhindsa, H. Ghanim, and A. Chaudhuri. 2007. Angiotensin II and inflammation: The effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. Journal of Human Hypertension 21: 20–27.

    Article  CAS  PubMed  Google Scholar 

  • Daugherty, A., et al. 2010. Genetic variants of the renin angiotensin system: Effects on atherosclerosis in experimental models and humans. Current Atherosclerosis Reports 12: 167–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Gasparo, M., K.J. Catt, T. Inagami, J.W. Wright, and T. Unger. 2000. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacological Reviews 52: 415–472.

    CAS  PubMed  Google Scholar 

  • Desideri, G., M.C. Bravi, M. Tucci, G. Croce, M.C. Marinucci, A. Santucci, et al. 2003. Angiotensin II inhibits endothelial cell motility through an AT1-dependent oxidant-sensitive decrement of nitric oxide availability. Arteriosclerosis, Thrombosis, and Vascular Biology 23: 1218–1223.

    Article  CAS  PubMed  Google Scholar 

  • Dolgacheva, L.P., M.V. Turovskaya, V.V. Dynnik, et al. 2016. Angiotensin II activates different calcium signaling pathways in adipocytes. Archives of Biochemistry and Biophysics 593: 38–49.

    Article  CAS  PubMed  Google Scholar 

  • Epstein, M. 2001. Aldosterone and the hypertensive kidney: Its emerging role as a mediator of progressive renal dysfunction: A paradigm shift. Journal of Hypertension 19: 829–842.

    Article  CAS  PubMed  Google Scholar 

  • Erdem, Y., C. Usalan, I.C. Haznedaroglu, et al. 1999. Effects of angiotensin converting enzyme and angiotensin II receptor inhibition on impaired fibrinolysis in systemic hypertension. American Journal of Hypertension 12: 1071–1076.

    Article  CAS  PubMed  Google Scholar 

  • Ferrario, C.M., and W.B. Strawn. 2006. Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. The American Journal of Cardiology 98: 121–128.

    Article  CAS  PubMed  Google Scholar 

  • Ferrario, C.M., R.S. Richmond, R. Smith, et al. 2004. Renin-angiotensin system as a therapeutic target in managing atherosclerosis. American Journal of Therapeutics 11: 44–53.

    Article  PubMed  Google Scholar 

  • Galis, Z.S., and J.J. Khatri. 2002. Matrix metalloproteinases in vascular remodeling and atherogenesis: The good, the bad, and the ugly. Circulation Research 90: 251–262.

    CAS  PubMed  Google Scholar 

  • Gao, N., H. Wang, X. Zhang, and Z. Yang. 2015. The inhibitory effect of angiotensin II on BKCa channels in podocytes via oxidative stress. Molecular and Cellular Biochemistry 398: 217–222.

    Article  CAS  PubMed  Google Scholar 

  • Goker, H., I.C. Haznedaroglu, Y. Beyazit, et al. 2005. Local umbilical cord blood renin-angiotensin system. Annals of Hematology 84: 277–281.

    Article  CAS  PubMed  Google Scholar 

  • Graninger, M., R. Reiter, C. Drucker, E. Minar, and B. Jilma. 2004. Angiotensin receptor blockade decreases markers of vascular inflammation. Journal of Cardiovascular Pharmacology 44: 335–339.

    Article  CAS  PubMed  Google Scholar 

  • Guven, G.S., A. Kilicaslan, S.G. Oz, et al. 2006. Decrements in the thrombin activatable fibrinolysis inhibitor (TAFI) levels in association with orlistat treatment in obesity. Clinical and Applied Thrombosis/Hemostasis 12(3): 364–368.

    Article  CAS  PubMed  Google Scholar 

  • Han, Y., M.S. Runge, and A.R. Brasier. 1999. Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-kappa B transcription factors. Circulation Research 84: 695–703.

    Article  CAS  PubMed  Google Scholar 

  • Hara, M., K. Ono, H. Wada, S. Sasayama, and A. Matsumori. 2004. Preformed angiotensin II is present in human mast cells. Cardiovascular Drugs and Therapy 18: 415–420.

    Article  CAS  PubMed  Google Scholar 

  • Haznedaroglu, I.C., and Y. Beyazit. 2010. Pathobiological aspects of the local bone marrow renin-angiotensin system: A review. Journal of the Renin-Angiotensin-Aldosterone System 11(4): 205–213.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2013. Local bone marrow renin-angiotensin system in primitive, definitive and neoplastic haematopoiesis. Clinical Science (London, England) 124(5): 307–323.

    Article  CAS  Google Scholar 

  • Haznedaroglu, I.C., and M.A. Ozturk. 2003. Towards the understanding of the local hematopoietic bone marrow renin-angiotensin system. The International Journal of Biochemistry & Cell Biology 35: 867–880.

    Article  CAS  Google Scholar 

  • Haznedaroglu, I.C., S. Tuncer, and M. Gursoy. 1996. A local renin-angiotensin system in the bone marrow. Medical Hypotheses 46: 507–510.

    Article  CAS  PubMed  Google Scholar 

  • Haznedaroglu, I.C., M. Arici, and Y. Buyukasik. 2000. A unifying hypothesis for the renin-angiotensin system and hematopoiesis: Sticking the pieces together with the JAK-STAT pathway. Medical Hypotheses 54: 80–83.

    Article  CAS  PubMed  Google Scholar 

  • Henegar, J., S. Bigler, L. Henegar, S. Tyagi, and J. Hall. 2001. Functional and structural changes in the kidney in the early stages of obesity. Journal of the American Society of Nephrology 12: 1211–1217.

    CAS  PubMed  Google Scholar 

  • Hernández-Presa, M., C. Bustos, M. Ortego, et al. 1997. Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-kappa B activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation 95: 1532–1541.

    Article  PubMed  Google Scholar 

  • Herrera, C.L., W. Castillo, P. Estrada, et al. 2016. Association of polymorphisms within the Renin-Angiotensin System with metabolic syndrome in a cohort of Chilean subjects. Archives of Endocrinology and Metabolism 60(3): 190–198. doi:10.1590/2359-3997000000134.

    Article  PubMed  Google Scholar 

  • Itoh, H., M. Mukoyama, R.E. Pratt, G.H. Gibbons, and V.J. Dzau. 1993. Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin II. The Journal of Clinical Investigation 91: 2268–2274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai, N., and T. Inagami. 1992. Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Letters 298: 257–260.

    Article  CAS  PubMed  Google Scholar 

  • Jurewicz, M., et al. 2007. Human T and natural killer cells possess a functional renin-angiotensin system: Further mechanisms of angiotensin II-induced inflammation. Journal of the American Society of Nephrology 18: 1093–1102.

    Article  CAS  PubMed  Google Scholar 

  • Kalupahana, N.S., and N. Moustaid-Moussa. 2012a. The renin-angiotensin system: A link between obesity, inflammation and insulin resistance. Obesity Reviews 13: 136–149.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2012b. The adipose tissue renin-angiotensin system and metabolic disorders: A review of molecular mechanisms. Critical Reviews in Biochemistry and Molecular Biology 47: 379–390.

    Article  CAS  PubMed  Google Scholar 

  • Karmali, R., A. Dalovisio, J.A. Borgia, et al. 2015. All in the family: Clueing into the link between metabolic syndrome and hematologic malignancies. Blood Reviews 29: 71–80.

    Article  CAS  PubMed  Google Scholar 

  • Kato, H., J. Ishida, S. Imagawa, et al. 2005. Enhanced erythropoiesis mediated by activation of the renin-angiotensin system via angiotensin II type 1a receptor. The FASEB Journal 19: 2023–2025.

    CAS  PubMed  Google Scholar 

  • Kato, H., J. Ishida, K. Nagano, et al. 2008. Deterioration of atherosclerosis in mice lacking angiotensin II type 1A receptor in bone marrow-derived cells. Laboratory Investigation 88: 731–739.

    Article  CAS  PubMed  Google Scholar 

  • Katusic, Z.S., and P.M. Vanhoutte. 1989. Superoxide anion is an endothelium-derived contracting factor. The American Journal of Physiology 257: 33–37.

    Google Scholar 

  • Kawarazaki, W., and T. Fujita. 2016. The Role of aldosterone in obesity-related hypertension. American Journal of Hypertension 29: 415–423.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, J.A., M. Montagnani, S. Chandrasekran, and M.J. Quon. 2012. Role of lipotoxicity in endothelial dysfunction. Heart Failure Clinics 8(4): 589–607.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koca, E., I.C. Haznedaroglu, A. Uner, et al. 2007. Angiotensin-converting enzyme expression of the lymphoma-associated macrophages in the lymph nodes of Hodgkin’s disease. Journal of the National Medical Association 99: 1243–1247.

    PubMed  PubMed Central  Google Scholar 

  • Kvakan, H., et al. 2009. Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation 119: 2904–U2983.

    Article  CAS  PubMed  Google Scholar 

  • Lassègue, B., and R.E. Clempus. 2003. Vascular NAD(P)H oxidases: Specific features, expression, and regulation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 285: 277–297.

    Article  Google Scholar 

  • Laursen, J.B., S. Rajagopalan, Z. Galis, M. Tarpey, B.A. Freeman, and D.G. Harrison. 1997. Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 95: 588–593.

    Article  CAS  PubMed  Google Scholar 

  • LeMieux, M.J., L. Ramalingam, R.L. Mynatt, et al. 2016. Inactivation of adipose angiotensinogen reduces adipose tissue macrophages and increases metabolic activity. Obesity (Silver Spring) 24: 359–367.

    Article  CAS  Google Scholar 

  • Leone, A.M., et al. 2009. From bone marrow to the arterial wall: The ongoing tale of endothelial progenitor cells. European Heart Journal 30: 890–899.

    Article  PubMed  Google Scholar 

  • Li, C., Y. Lin, R. Luo, et al. 2016. Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney. American Journal of Physiology. Renal Physiology 310: 351–363.

    Article  Google Scholar 

  • Luo, H., X. Wang, C. Chen, et al. 2015. Oxidative stress causes imbalance of renal renin angiotensin system (RAS) components and hypertension in obese Zucker rats. Journal of the American Heart Association 4(2): e001559. doi:10.1161/JAHA.114.001559.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy, T.J., R.W. Alexander, K.K. Griendling, M.S. Runge, and K.E. Bernstein. 1991. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351: 233–236.

    Article  CAS  PubMed  Google Scholar 

  • Nehme, A., C. Cerutti, N. Dhaouadi, et al. 2015. Atlas of tissue renin-angiotensin-aldosterone system in human: A transcriptomic meta-analysis. Scientific Reports 5: 10035. doi:10.1038/srep10035.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neutel, J.M. 2004. Effect of the renin—angiotensin system on the vessel wall: Using ACE inhibition to improve endothelial function. Journal of Human Hypertension 18: 599–606.

    Article  CAS  PubMed  Google Scholar 

  • Ozturk, M.A., G.S. Guven, and I.C. Haznedaroglu. 2004. How hematopoietic stem cells know and act in cardiac microenvironment for stem cell plasticity? Impact of local renin-angiotensin systems. Medical Hypotheses 63: 866–874.

    Article  PubMed  Google Scholar 

  • Pastore, L., A. Tessitore, S. Martinotti, et al. 1999. Angiotensin II stimulates intercellular adhesion molecule-1 (ICAM-1) expression by human vascular endothelial cells and increases soluble ICAM-1 release in vivo. Circulation 100: 1646–1652.

    Article  CAS  PubMed  Google Scholar 

  • Patel, V.B., J. Mori, B.A. McLean, et al. 2016. ACE2 deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity. Diabetes 65: 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Paul, M., A. Poyan Mehr, and R. Kreutz. 2006. Physiology of local renin-angiotensin systems. Physiological Reviews 86: 747–803.

    Article  CAS  PubMed  Google Scholar 

  • Paulis, L., S. Foulquier, P. Namsolleck, et al. 2016. Combined angiotensin receptor modulation in the management of cardio-metabolic disorders. Drugs 76: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Pinto, R.P., K.K. Wang, H. Khoury, A.D. Schimmer, and M.D. Minden. 2004. Aberrant expression of angiotensin in acute myeloid leukemia. Blood 102: 2124.

    Google Scholar 

  • Robinson, K.A., F.J. Candal, N.A. Scott, and E.W. Ades. 1995. Seeding of vascular grafts with an immortalized human dermal microvascular endothelial cell line. Angiology 46: 107–113.

    Article  CAS  PubMed  Google Scholar 

  • Roks, A.J.M., et al. 2011. Effects of the renin angiotensin system on vasculogenesis-related progenitor cells. Current Opinion in Pharmacology 11: 162–174.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Ortega, M., O. Lorenzo, M. Rupérez, et al. 2001. Role of the renin-angiotensin system in vascular diseases: Expanding the field. Hypertension 38: 1382–1387.

    Article  CAS  PubMed  Google Scholar 

  • Sata, M., and D. Fukuda. 2010. Crucial role of renin-angiotensin system in the pathogenesis of atherosclerosis. The Journal of Medical Investigation 57: 12–25.

    Article  PubMed  Google Scholar 

  • Sayeski, P.P., and K.E. Bernstein. 2001. Signal transduction mechanisms of the angiotensin II type AT(1)-receptor: Looking beyond the heterotrimeric G protein paradigm. Journal of the Renin-Angiotensin-Aldosterone System 2: 4–10.

    Article  CAS  PubMed  Google Scholar 

  • Sayitoglu, M., I.C. Haznedaroglu, O. Hatirnaz, et al. 2009. Effects of imatinib mesylate on renin-angiotensin system (RAS) activity during the clinical course of chronic myeloid leukaemia. The Journal of International Medical Research 37: 1018–1028.

    Article  CAS  PubMed  Google Scholar 

  • Schieffer, B., M. Luchtefeld, S. Braun, A. Hilfiker, D. Hilfiker-Kleiner, and H. Drexler. 2000. Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circulation Research 87: 1195–1201.

    Article  CAS  PubMed  Google Scholar 

  • Scott-Burden, T., A.W. Hahn, T.J. Resink, and F.R. Bühler. 1990. Modulation of extracellular matrix by angiotensin II: Stimulated glycoconjugate synthesis and growth in vascular smooth muscle cells. Journal of Cardiovascular Pharmacology 16: 36–41.

    Article  Google Scholar 

  • Slukvin, I.I. 2009. Renin angiotensin system and hemangioblast development from human embryonic stem cells. Expert Review of Hematology 2: 137–143.

    Article  CAS  PubMed  Google Scholar 

  • Soehnlein, O., and C. Weber. 2009. Myeloid cells in atherosclerosis: Initiators and decision shapers. Seminars in Immunopathology 31: 35–47.

    Article  CAS  PubMed  Google Scholar 

  • Sopel, M.J., et al. 2011. Myocardial fibrosis in response to Angiotensin II is preceded by the recruitment of mesenchymal progenitor cells. Laboratory Investigation 91: 565–578.

    Article  CAS  PubMed  Google Scholar 

  • Steinmetz, M., et al. 2010. Endothelial-regenerating cells an expanding universe. Hypertension 55: 593–599.

    Article  CAS  PubMed  Google Scholar 

  • Strawn, W.B., and C.M. Ferrario. 2008. Angiotensin II AT(1) receptor blockade normalizes CD11b(+) monocyte production in bone marrow of hypercholesterolemic monkeys. Atherosclerosis 196: 624–632.

    Article  CAS  PubMed  Google Scholar 

  • Strawn, W., R. Richmond, and C. Ferrario. 2003. A new understanding of atherosclerosis: The bone marrow response-to-lipid hypothesis. In Heart Disease: Pathogenesis, Diagnosis and Treatment (3rd World Congress on Heart Disease), 183–188. Washington, DC.

    Google Scholar 

  • Sun, J., J. Luo, Y. Ruan, et al. 2016. Free fatty acids activate renin-angiotensin system in 3T3-L1 adipocytes through nuclear factor-kappa B pathway. Journal of Diabetes Research 2016: 1587594. doi:10.1155/2016/1587594.

    PubMed  Google Scholar 

  • Surwit, R.S., S. Wang, A.E. Petro, S. Raimbault, D. Ricquier, and S. Collins. 1998. Diet-induced changes in uncoupling proteins in obesity-prone and obesity-resistant strains of mice. Proceedings of the National Academy of Sciences of the United States of America 95: 4061–4065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda, A., C. Goolsby, and N.R. Yaseen. 2006. NUP98-HOXA9 induces long-term proliferation and blocks differentiation of primary human CD34+ hematopoietic cells. Cancer Research 66: 6628–6637.

    Article  CAS  PubMed  Google Scholar 

  • Thum, T., et al. 2006. Bone marrow molecular alterations after myocardial infarction: Impact on endothelial progenitor cells. Cardiovascular Research 70: 50–60.

    Article  CAS  PubMed  Google Scholar 

  • Tiret, L., O. Poirier, V. Hallet, T. McDonagh, C. Morrison, J. McMurray, H. Dargie, D. Arveiler, J. Ruidavets, G. Luc, A. Evans, and F. Cambien. 1999. The Lys198Asn polymorphism in the endothelin-1 gene is associated with blood pressure in overweight people. Hypertension 33: 1169–1174.

    Article  CAS  PubMed  Google Scholar 

  • Touyz, R.M. 2005. Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension: Role of angiotensin II. Experimental Physiology 90: 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Urata, H., H. Nishimura, and D. Ganten. 1996. Chymase-dependent angiotensin II forming systems in humans. American Journal of Hypertension 9: 277–284.

    Article  CAS  PubMed  Google Scholar 

  • Williams, B., A.Q. Baker, B. Gallacher, and D. Lodwick. 1995. Angiotensin II increases vascular permeability factor gene expression by human vascular smooth muscle cells. Hypertension 25: 913–917.

    Article  CAS  PubMed  Google Scholar 

  • Wulf, G.G., G. Jahns-Streubel, F. Strutz, et al. 1996. Paraneoplastic hypokalemia in acute myeloid leukemia: A case of renin activity in AML blast cells. Annals of Hematology 73: 139–141.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, T., T. Kondo, Y. Numaguchi, et al. 2007. Angiotensin II receptor blocker inhibits neointimal hyperplasia through regulation of smooth muscle-like progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology 27: 2363–2369.

    Article  CAS  PubMed  Google Scholar 

  • Yang, B.C., M.I. Phillips, D. Mohuczy, H. Meng, L. Shen, P. Mehta, and J.L. Mehta. 1998. Increased angiotensin II type 1 receptor expression in hypercholesterolemic atherosclerosis in rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology 18: 1433–1439.

    Article  CAS  PubMed  Google Scholar 

  • Yildiz, B.O., and I.C. Haznedaroglu. 2006. Rethinking leptin and insulin action: Therapeutic opportunities for diabetes. The International Journal of Biochemistry & Cell Biology 38: 820–830.

    Article  CAS  Google Scholar 

  • Zambidis, E.T., T. Soon Park, W. Yu, et al. 2008. Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood 112: 3601–3614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucker, I.H., and M.C. Zimmerman. 2011. The renin-angiotensin system in 2011: New avenues for translational research. Current Opinion in Pharmacology 11: 101–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Celalettin Haznedaroglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Haznedaroglu, I.C., Malkan, U.Y. (2017). Lipotoxicity-Related Hematological Disorders in Obesity. In: Engin, A., Engin, A. (eds) Obesity and Lipotoxicity. Advances in Experimental Medicine and Biology, vol 960. Springer, Cham. https://doi.org/10.1007/978-3-319-48382-5_20

Download citation

Publish with us

Policies and ethics