Skip to main content

Adipose Tissue Hypoxia in Obesity and Its Impact on Preadipocytes and Macrophages: Hypoxia Hypothesis

  • Chapter
  • First Online:
Obesity and Lipotoxicity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 960))

Abstract

Obese subjects exhibit lower adipose tissue oxygen consumption in accordance with the lower adipose tissue blood flow. Thus, compared with lean subjects, obese subjects have 44% lower capillary density and 58% lower vascular endothelial growth factor (VEGF). The VEGF expression together with hypoxia-inducible transcription factor-1 (HIF-1) activity also requires phosphatidylinositol 3-kinase (PI3K)- and target of rapamycin (TOR)-mediated signaling. HIF-1alpha is an important signaling molecule for hypoxia to induce the inflammatory responses. Hypoxia affects a number of biological functions, such as angiogenesis, cell proliferation, apoptosis, inflammation and insulin resistance. Additionally, reactive oxygen radical (ROS) generation at mitochondria is responsible for propagation of the hypoxic signal. Actually mitochondrial ROS (mtROS) production, but not oxygen consumption is required for hypoxic HIF-1alpha protein stabilization. Adipocyte mitochondrial oxidative capacity is reduced in obese compared with non-obese adults. In this respect, mitochondrial dysfunction of adipocyte is associated with the overall adiposity. Furthermore, hypoxia also inhibits macrophage migration from the hypoxic adipose tissue. Alterations in oxygen availability of adipose tissue directly affect the macrophage polarization and are responsible from dysregulated adipocytokines production in obesity. Hypoxia also inhibits adipocyte differentiation from preadipocytes. In addition to stressed adipocytes, hypoxia contributes to immune cell immigration and activation which further aggravates adipose tissue fibrosis. Fibrosis is initiated in response to adipocyte hypertrophy in obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Iborra, B., A. Elorza, I.M. Olazabal, N.B. Martín-Cofreces, S. Martin-Puig, M. Miró, M.J. Calzada, J. Aragonés, F. Sánchez-Madrid, and M.O. Landázuri. 2009. Macrophage oxygen sensing modulates antigen presentation and phagocytic functions involving IFN-gamma production through the HIF-1 alpha transcription factor. Journal of Immunology (Baltimore, Md. 1950) 182: 3155–3164. doi:10.4049/jimmunol.0801710.

    Article  CAS  Google Scholar 

  • Ali, A.T., W.E. Hochfeld, R. Myburgh, and M.S. Pepper. 2013. Adipocyte and adipogenesis. European Journal of Cell Biology 92: 229–236. doi:10.1016/j.ejcb.2013.06.001.

    Article  CAS  PubMed  Google Scholar 

  • Arany, Z., S.-Y. Foo, Y. Ma, J.L. Ruas, A. Bommi-Reddy, G. Girnun, M. Cooper, D. Laznik, J. Chinsomboon, S.M. Rangwala, K.H. Baek, A. Rosenzweig, and B.M. Spiegelman. 2008. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451: 1008–1012. doi:10.1038/nature06613.

    Article  CAS  PubMed  Google Scholar 

  • Arner, E., P.O. Westermark, K.L. Spalding, T. Britton, M. Rydén, J. Frisén, S. Bernard, and P. Arner. 2010. Adipocyte turnover: Relevance to human adipose tissue morphology. Diabetes 59: 105–109. doi:10.2337/db09-0942.

    Article  CAS  PubMed  Google Scholar 

  • Bagi, Z., A. Koller, and G. Kaley. 2004. PPARgamma activation, by reducing oxidative stress, increases NO bioavailability in coronary arterioles of mice with Type 2 diabetes. American Journal of Physiology: Heart and Circulatory Physiology 286: H742–H748. doi:10.1152/ajpheart.00718.2003.

    CAS  PubMed  Google Scholar 

  • Bastard, J.-P., M. Maachi, C. Lagathu, M.J. Kim, M. Caron, H. Vidal, J. Capeau, and B. Feve. 2006. Recent advances in the relationship between obesity, inflammation, and insulin resistance. European Cytokine Network 17: 4–12.

    CAS  PubMed  Google Scholar 

  • Bell, E.L., T.A. Klimova, J. Eisenbart, C.T. Moraes, M.P. Murphy, G.R.S. Budinger, and N.S. Chandel. 2007. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. The Journal of Cell Biology 177: 1029–1036. doi:10.1083/jcb.200609074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchet, E., S. Van de Velde, S. Matsumura, E. Hao, J. LeLay, K. Kaestner, and M. Montminy. 2015. Feedback inhibition of CREB signaling promotes beta cell dysfunction in insulin resistance. Cell Reports 10: 1149–1157. doi:10.1016/j.celrep.2015.01.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolinder, J., D.A. Kerckhoffs, E. Moberg, E. Hagström-Toft, and P. Arner. 2000. Rates of skeletal muscle and adipose tissue glycerol release in nonobese and obese subjects. Diabetes 49: 797–802.

    Article  CAS  PubMed  Google Scholar 

  • Brahimi-Horn, M.C., and J. Pouysségur. 2007. Oxygen, a source of life and stress. FEBS Letters 581: 3582–3591. doi:10.1016/j.febslet.2007.06.018.

    Article  CAS  PubMed  Google Scholar 

  • Brewer, J.W. 2014. Regulatory crosstalk within the mammalian unfolded protein response. Cellular and Molecular Life Sciences: CMLS 71: 1067–1079. doi:10.1007/s00018-013-1490-2.

    Article  CAS  PubMed  Google Scholar 

  • Brüne, B., and J. Zhou. 2003. The role of nitric oxide (NO) in stability regulation of hypoxia inducible factor-1alpha (HIF-1alpha). Current Medicinal Chemistry 10: 845–855.

    Article  PubMed  Google Scholar 

  • Brunelle, J.K., E.L. Bell, N.M. Quesada, K. Vercauteren, V. Tiranti, M. Zeviani, R.C. Scarpulla, and N.S. Chandel. 2005. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metabolism 1: 409–414. doi:10.1016/j.cmet.2005.05.002.

    Article  CAS  PubMed  Google Scholar 

  • Buechler, C., S. Krautbauer, and K. Eisinger. 2015. Adipose tissue fibrosis. World Journal of Diabetes 6: 548–553. doi:10.4239/wjd.v6.i4.548.

    PubMed  PubMed Central  Google Scholar 

  • Carobbio, S., R.M. Hagen, C.J. Lelliott, M. Slawik, G. Medina-Gomez, C.-Y. Tan, A. Sicard, H.J. Atherton, N. Barbarroja, M. Bjursell, M. Bohlooly-Y, S. Virtue, A. Tuthill, E. Lefai, M. Laville, T. Wu, R.V. Considine, H. Vidal, D. Langin, M. Oresic, F.J. Tinahones, J.M. Fernandez-Real, J.L. Griffin, J.K. Sethi, M. López, and A. Vidal-Puig. 2013. Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity. Diabetes 62: 3697–3708. doi:10.2337/db12-1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrière, A., M.-C. Carmona, Y. Fernandez, M. Rigoulet, R.H. Wenger, L. Pénicaud, and L. Casteilla. 2004. Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: A mechanism for hypoxia-dependent effect. The Journal of Biological Chemistry 279: 40462–40469. doi:10.1074/jbc.M407258200.

    Article  PubMed  CAS  Google Scholar 

  • Ceperuelo-Mallafré, V., X. Duran, G. Pachón, K. Roche, L. Garrido-Sánchez, N. Vilarrasa, F.J. Tinahones, V. Vicente, J. Pujol, J. Vendrell, and S. Fernández-Veledo. 2014. Disruption of GIP/GIPR axis in human adipose tissue is linked to obesity and insulin resistance. The Journal of Clinical Endocrinology and Metabolism 99: E908–E919. doi:10.1210/jc.2013-3350.

    Article  PubMed  CAS  Google Scholar 

  • Chandel, N.S., E. Maltepe, E. Goldwasser, C.E. Mathieu, M.C. Simon, and P.T. Schumacker. 1998. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proceedings of the National Academy of Sciences of the United States of America 95: 11715–11720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandel, N.S., D.S. McClintock, C.E. Feliciano, T.M. Wood, J.A. Melendez, A.M. Rodriguez, and P.T. Schumacker. 2000. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: A mechanism of O2 sensing. The Journal of Biological Chemistry 275: 25130–25138. doi:10.1074/jbc.M001914200.

    Article  CAS  PubMed  Google Scholar 

  • Chen, B., K.S.L. Lam, Y. Wang, D. Wu, M.C. Lam, J. Shen, L. Wong, R.L.C. Hoo, J. Zhang, and A. Xu. 2006. Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes. Biochemical and Biophysical Research Communications 341: 549–556. doi:10.1016/j.bbrc.2006.01.004.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., F. Okahara, N. Osaki, and A. Shimotoyodome. 2015. Increased GIP signaling induces adipose inflammation via a HIF-1α-dependent pathway and impairs insulin sensitivity in mice. American Journal of Physiology: Endocrinology and Metabolism 308: E414–E425. doi:10.1152/ajpendo.00418.2014.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, C., and C. Daskalakis. 2015. Association of adipokines with insulin resistance, microvascular dysfunction, and endothelial dysfunction in healthy young adults. Mediators of Inflammation 2015: 594039. doi:10.1155/2015/594039.

    PubMed  PubMed Central  Google Scholar 

  • Crandall, D.L., G.J. Hausman, and J.G. Kral. 1997. A review of the microcirculation of adipose tissue: Anatomic, metabolic, and angiogenic perspectives. Microcirculation (New York, NY: 1994) 4: 211–232.

    Article  CAS  Google Scholar 

  • De Ponti, C., R. Carini, E. Alchera, M.P. Nitti, M. Locati, E. Albano, G. Cairo, and L. Tacchini. 2007. Adenosine A2a receptor-mediated, normoxic induction of HIF-1 through PKC and PI-3K-dependent pathways in macrophages. Journal of Leukocyte Biology 82: 392–402. doi:10.1189/jlb.0107060.

    Article  CAS  PubMed  Google Scholar 

  • Divoux, A., J. Tordjman, D. Lacasa, N. Veyrie, D. Hugol, A. Aissat, A. Basdevant, M. Guerre-Millo, C. Poitou, J.-D. Zucker, P. Bedossa, and K. Clément. 2010. Fibrosis in human adipose tissue: Composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59: 2817–2825. doi:10.2337/db10-0585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donato, A.J., G.D. Henson, R.G. Morgan, R.A. Enz, A.E. Walker, and L.A. Lesniewski. 2012. TNF-α impairs endothelial function in adipose tissue resistance arteries of mice with diet-induced obesity. American Journal of Physiology: Heart and Circulatory Physiology 303: H672–H679. doi:10.1152/ajpheart.00271.2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du, J., R. Xu, Z. Hu, Y. Tian, Y. Zhu, L. Gu, and L. Zhou. 2011. PI3K and ERK-induced Rac1 activation mediates hypoxia-induced HIF-1α expression in MCF-7 breast cancer cells. PLoS One 6: e25213. doi:10.1371/journal.pone.0025213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elias, I., S. Franckhauser, T. Ferré, L. Vilà, S. Tafuro, S. Muñoz, C. Roca, D. Ramos, A. Pujol, E. Riu, J. Ruberte, and F. Bosch. 2012. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes 61: 1801–1813. doi:10.2337/db11-0832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escribese, M.M., M. Casas, and A.L. Corbí. 2012. Influence of low oxygen tensions on macrophage polarization. Immunobiology 217: 1233–1240. doi:10.1016/j.imbio.2012.07.002.

    Article  CAS  PubMed  Google Scholar 

  • Evans, A.M., K.J.W. Mustard, C.N. Wyatt, C. Peers, M. Dipp, P. Kumar, N.P. Kinnear, and D.G. Hardie. 2005. Does AMP-activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2-sensing cells? The Journal of Biological Chemistry 280: 41504–41511. doi:10.1074/jbc.M510040200.

    Article  CAS  PubMed  Google Scholar 

  • Fain, J.N. 2006. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitamins and Hormones 74: 443–477. doi:10.1016/S0083-6729(06)74018-3.

    Article  CAS  PubMed  Google Scholar 

  • Fajas, L., J.C. Fruchart, and J. Auwerx. 1998. Transcriptional control of adipogenesis. Current Opinion in Cell Biology 10: 165–173.

    Article  CAS  PubMed  Google Scholar 

  • Farmer, S.R. 2005. Regulation of PPARgamma activity during adipogenesis. International Journal of Obesity 29(Suppl 1): S13–S16. doi:10.1038/sj.ijo.0802907.

    Article  CAS  PubMed  Google Scholar 

  • Farnier, C., S. Krief, M. Blache, F. Diot-Dupuy, G. Mory, P. Ferre, and R. Bazin. 2003. Adipocyte functions are modulated by cell size change: Potential involvement of an integrin/ERK signalling pathway. International Journal of Obesity and Related Metabolic Disorders 27: 1178–1186. doi:10.1038/sj.ijo.0802399.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, B., T. Schöttl, C. Schempp, T. Fromme, H. Hauner, M. Klingenspor, and T. Skurk. 2015. Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes. American Journal of Physiology: Endocrinology and Metabolism 309: E380–E387. doi:10.1152/ajpendo.00524.2014.

    CAS  PubMed  Google Scholar 

  • Frayn, K.N., and F. Karpe. 2014. Regulation of human subcutaneous adipose tissue blood flow. International Journal of Obesity 38: 1019–1026. doi:10.1038/ijo.2013.200.

    Article  CAS  PubMed  Google Scholar 

  • Fujisaka, S., I. Usui, M. Ikutani, A. Aminuddin, A. Takikawa, K. Tsuneyama, A. Mahmood, N. Goda, Y. Nagai, K. Takatsu, and K. Tobe. 2013. Adipose tissue hypoxia induces inflammatory M1 polarity of macrophages in an HIF-1α-dependent and HIF-1α-independent manner in obese mice. Diabetologia 56: 1403–1412. doi:10.1007/s00125-013-2885-1.

    Article  CAS  PubMed  Google Scholar 

  • Fusaru, A.M., C.G. Pisoschi, A. Bold, C. Taisescu, R. Stănescu, M. Hîncu, S. CrăiÅ£oiu, and I.M. Baniţă. 2012. Hypoxia induced VEGF synthesis in visceral adipose depots of obese diabetic patients. Romanian Journal of Morphology and Embryology 53: 903–909.

    PubMed  Google Scholar 

  • Garcia-Fuentes, E., M. Murri, L. Garrido-Sanchez, S. Garcia-Serrano, J.M. García-Almeida, I. Moreno-Santos, F.J. Tinahones, and M. Macias-Gonzalez. 2010. PPARgamma expression after a high-fat meal is associated with plasma superoxide dismutase activity in morbidly obese persons. Obesity (Silver Spring, Md.) 18: 952–958. doi:10.1038/oby.2009.314.

    Article  CAS  Google Scholar 

  • García-Fuentes, E., C. Santiago-Fernández, C. Gutiérrez-Repiso, M.D. Mayas, W. Oliva-Olivera, L. Coín-Aragüez, J. Alcaide, L. Ocaña-Wilhelmi, J. Vendrell, F.J. Tinahones, and L. Garrido-Sánchez. 2015. Hypoxia is associated with a lower expression of genes involved in lipogenesis in visceral adipose tissue. Journal of Translational Medicine 13: 373. doi:10.1186/s12967-015-0732-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • García-Serrano, S., I. Moreno-Santos, L. Garrido-Sánchez, C. Gutierrez-Repiso, J.M. García-Almeida, J. García-Arnés, J. Rivas-Marín, J.L. Gallego-Perales, E. García-Escobar, G. Rojo-Martinez, F. Tinahones, F. Soriguer, M. Macias-Gonzalez, and E. García-Fuentes. 2011. Stearoyl-CoA desaturase-1 is associated with insulin resistance in morbidly obese subjects. Molecular Medicine 17: 273–280. doi:10.2119/molmed.2010.00078.

    Article  PubMed  CAS  Google Scholar 

  • Gealekman, O., N. Guseva, C. Hartigan, S. Apotheker, M. Gorgoglione, K. Gurav, K.-V. Tran, J. Straubhaar, S. Nicoloro, M.P. Czech, M. Thompson, R.A. Perugini, and S. Corvera. 2011. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 123: 186–194. doi:10.1161/CIRCULATIONAHA.110.970145.

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Muniesa, P., C. de Oliveira, F. Pérez de Heredia, M.P. Thompson, and P. Trayhurn. 2011. Fatty acids and hypoxia stimulate the expression and secretion of the adipokine ANGPTL4 (angiopoietin-like protein 4/ fasting-induced adipose factor) by human adipocytes. Journal of Nutrigenetics and Nutrigenomics 4: 146–153. doi:10.1159/000327774.

    Article  PubMed  CAS  Google Scholar 

  • Goossens, G.H., and E.E. Blaak. 2015. Adipose tissue dysfunction and impaired metabolic health in human obesity: A matter of oxygen? Frontiers in Endocrinology 6: 55. doi:10.3389/fendo.2015.00055.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goossens, G.H., A. Bizzarri, N. Venteclef, Y. Essers, J.P. Cleutjens, E. Konings, J.W.E. Jocken, M. Cajlakovic, V. Ribitsch, K. Clément, and E.E. Blaak. 2011. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 124: 67–76. doi:10.1161/CIRCULATIONAHA.111.027813.

    Article  CAS  PubMed  Google Scholar 

  • Goossens, G.H., C.C.M. Moors, N.J. van der Zijl, N. Venteclef, R. Alili, J.W.E. Jocken, Y. Essers, J.P. Cleutjens, K. Clément, M. Diamant, and E.E. Blaak. 2012. Valsartan improves adipose tissue function in humans with impaired glucose metabolism: A randomized placebo-controlled double-blind trial. PLoS One 7: e39930. doi:10.1371/journal.pone.0039930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg, J.I., D.J. Shields, S.G. Barillas, L.M. Acevedo, E. Murphy, J. Huang, L. Scheppke, C. Stockmann, R.S. Johnson, N. Angle, and D.A. Cheresh. 2008. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456: 809–813. doi:10.1038/nature07424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, P., and A. Xu. 2013. Interplay between adipose tissue and blood vessels in obesity and vascular dysfunction. Reviews in Endocrine & Metabolic Disorders 14: 49–58. doi:10.1007/s11154-012-9230-8.

    Article  CAS  Google Scholar 

  • Halberg, N., T. Khan, M.E. Trujillo, I. Wernstedt-Asterholm, A.D. Attie, S. Sherwani, Z.V. Wang, S. Landskroner-Eiger, S. Dineen, U.J. Magalang, R.A. Brekken, and P.E. Scherer. 2009. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Molecular and Cellular Biology 29: 4467–4483. doi:10.1128/MCB.00192-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handschin, C., and B.M. Spiegelman. 2006. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocrine Reviews 27: 728–735. doi:10.1210/er.2006-0037.

    Article  CAS  PubMed  Google Scholar 

  • Hardie, D.G., S.A. Hawley, and J.W. Scott. 2006. AMP-activated protein kinase—Development of the energy sensor concept. The Journal of Physiology 574: 7–15. doi:10.1113/jphysiol.2006.108944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, Q., Z. Gao, J. Yin, J. Zhang, Z. Yun, and J. Ye. 2011. Regulation of HIF-1{alpha} activity in adipose tissue by obesity-associated factors: Adipogenesis, insulin, and hypoxia. American Journal of Physiology: Endocrinology and Metabolism 300: E877–E885. doi:10.1152/ajpendo.00626.2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heida, N.-M., M. Leifheit-Nestler, M.R. Schroeter, J.-P. Müller, I.-F. Cheng, S. Henkel, A. Limbourg, F.P. Limbourg, F. Alves, J.P. Quigley, Z.M. Ruggeri, G. Hasenfuss, S. Konstantinides, and K. Schäfer. 2010. Leptin enhances the potency of circulating angiogenic cells via src kinase and integrin (alpha)vbeta5: Implications for angiogenesis in human obesity. Arteriosclerosis, Thrombosis, and Vascular Biology 30: 200–206. doi:10.1161/ATVBAHA.109.192807.

    Article  CAS  PubMed  Google Scholar 

  • Herold, C., H.O. Rennekampff, and S. Engeli. 2013. Apoptotic pathways in adipose tissue. Apoptosis 18: 911–916. doi:10.1007/s10495-013-0848-0.

    Article  CAS  PubMed  Google Scholar 

  • Hetz, C. 2012. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nature Reviews: Molecular Cell Biology 13: 89–102. doi:10.1038/nrm3270.

    CAS  PubMed  Google Scholar 

  • Hetz, C., F. Martinon, D. Rodriguez, and L.H. Glimcher. 2011. The unfolded protein response: Integrating stress signals through the stress sensor IRE1α. Physiological Reviews 91: 1219–1243. doi:10.1152/physrev.00001.2011.

    Article  CAS  PubMed  Google Scholar 

  • Hirai, S., C. Ohyane, Y.-I. Kim, S. Lin, T. Goto, N. Takahashi, C.-S. Kim, J. Kang, R. Yu, and T. Kawada. 2014. Involvement of mast cells in adipose tissue fibrosis. American Journal of Physiology: Endocrinology and Metabolism 306: E247–E255. doi:10.1152/ajpendo.00056.2013.

    CAS  PubMed  Google Scholar 

  • Hodson, L. 2014. Adipose tissue oxygenation: Effects on metabolic function. Adipocytes 3: 75–80. doi:10.4161/adip.27114.

    Article  Google Scholar 

  • Hoffman, E.C., H. Reyes, F.F. Chu, F. Sander, L.H. Conley, B.A. Brooks, and O. Hankinson. 1991. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252: 954–958.

    Article  CAS  PubMed  Google Scholar 

  • Hosogai, N., A. Fukuhara, K. Oshima, Y. Miyata, S. Tanaka, K. Segawa, S. Furukawa, Y. Tochino, R. Komuro, M. Matsuda, and I. Shimomura. 2007. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56: 901–911. doi:10.2337/db06-0911.

    Article  CAS  PubMed  Google Scholar 

  • Huang, L.E., Z. Arany, D.M. Livingston, and H.F. Bunn. 1996. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. The Journal of Biological Chemistry 271: 32253–32259.

    Article  CAS  PubMed  Google Scholar 

  • Huang, L.E., J. Gu, M. Schau, and H.F. Bunn. 1998. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proceedings of the National Academy of Sciences of the United States of America 95: 7987–7992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbi, M.E., W. Luo, J.H. Baek, and G.L. Semenza. 2011. MCM proteins are negative regulators of hypoxia-inducible factor 1. Molecular Cell 42: 700–712. doi:10.1016/j.molcel.2011.03.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibarra, A., E. Schwob, and J. Méndez. 2008. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proceedings of the National Academy of Sciences of the United States of America 105: 8956–8961. doi:10.1073/pnas.0803978105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiyama, J., R. Taguchi, Y. Akasaka, S. Shibata, M. Ito, M. Nagasawa, and K. Murakami. 2011. Unsaturated FAs prevent palmitate-induced LOX-1 induction via inhibition of ER stress in macrophages. Journal of Lipid Research 52: 299–307. doi:10.1194/jlr.M007104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, S., S. Iwaki, K. Koike, Y. Yuda, A. Nagasaki, R. Ohkawa, Y. Yatomi, T. Furumoto, H. Tsutsui, B.E. Sobel, and S. Fujii. 2013. Increased plasma sphingosine-1-phosphate in obese individuals and its capacity to increase the expression of plasminogen activator inhibitor-1 in adipocytes. Coronary Artery Disease 24: 642–650. doi:10.1097/MCA.0000000000000033.

    PubMed  Google Scholar 

  • Jäger, R., M.J.M. Bertrand, A.M. Gorman, P. Vandenabeele, and A. Samali. 2012. The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biology of the Cell 104: 259–270. doi:10.1111/boc.201100055.

    Article  PubMed  CAS  Google Scholar 

  • Jhala, U.S., G. Canettieri, R.A. Screaton, R.N. Kulkarni, S. Krajewski, J. Reed, J. Walker, X. Lin, M. White, and M. Montminy. 2003. cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes & Development 17: 1575–1580. doi:10.1101/gad.1097103.

    Article  CAS  Google Scholar 

  • Katschinski, D.M., L. Le, S.G. Schindler, T. Thomas, A.K. Voss, and R.H. Wenger. 2004. Interaction of the PAS B domain with HSP90 accelerates hypoxia-inducible factor-1alpha stabilization. Cellular Physiology and Biochemistry 14: 351–360. doi:10.1159/000080345.

    Article  CAS  PubMed  Google Scholar 

  • Keijer, J., and E.M. van Schothorst. 2008. Adipose tissue failure and mitochondria as a possible target for improvement by bioactive food components. Current Opinion in Lipidology 19: 4–10. doi:10.1097/MOL.0b013e3282f39f95.

    Article  CAS  PubMed  Google Scholar 

  • Khan, T., E.S. Muise, P. Iyengar, Z.V. Wang, M. Chandalia, N. Abate, B.B. Zhang, P. Bonaldo, S. Chua, and P.E. Scherer. 2009. Metabolic dysregulation and adipose tissue fibrosis: Role of collagen VI. Molecular and Cellular Biology 29: 1575–1591. doi:10.1128/MCB.01300-08.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi, D., K. Tanimoto, and K. Nakayama. 2016. CREB is activated by ER stress and modulates the unfolded protein response by regulating the expression of IRE1α and PERK. Biochemical and Biophysical Research Communications 469: 243–250. doi:10.1016/j.bbrc.2015.11.113.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K.H., M.J. Song, J. Chung, H. Park, and J.B. Kim. 2005. Hypoxia inhibits adipocyte differentiation in a HDAC-independent manner. Biochemical and Biophysical Research Communications 333: 1178–1184. doi:10.1016/j.bbrc.2005.06.023.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.-J., H.-J. Kim, K.Y. Chung, I. Choi, and S.H. Kim. 2014. Transcriptional activation of PIK3R1 by PPARγ in adipocytes. Molecular Biology Reports 41: 5267–5272. doi:10.1007/s11033-014-3398-9.

    Article  CAS  PubMed  Google Scholar 

  • Koumenis, C., C. Naczki, M. Koritzinsky, S. Rastani, A. Diehl, N. Sonenberg, A. Koromilas, and B.G. Wouters. 2002. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Molecular and Cellular Biology 22: 7405–7416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kratchmarova, I., B. Blagoev, M. Haack-Sorensen, M. Kassem, and M. Mann. 2005. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308: 1472–1477. doi:10.1126/science.1107627.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan, J., C. Danzer, T. Simka, J. Ukropec, K.M. Walter, S. Kumpf, P. Mirtschink, B. Ukropcova, D. Gasperikova, T. Pedrazzini, and W. Krek. 2012. Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes & Development 26: 259–270. doi:10.1101/gad.180406.111.

    Article  CAS  Google Scholar 

  • Lee, J.H., Z. Gao, and J. Ye. 2013. Regulation of 11β-HSD1 expression during adipose tissue expansion by hypoxia through different activities of NF-κB and HIF-1α. American Journal of Physiology: Endocrinology and Metabolism 304: E1035–E1041. doi:10.1152/ajpendo.00029.2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y.S., J. Kim, O. Osborne, D.Y. Oh, R. Sasik, S. Schenk, A. Chen, H. Chung, A. Murphy, S.M. Watkins, O. Quehenberger, R.S. Johnson, and J.M. Olefsky. 2014. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell 157: 1339–1352. doi:10.1016/j.cell.2014.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefterova, M.I., and M.A. Lazar. 2009. New developments in adipogenesis. Trends in Endocrinology & Metabolism 20: 107–114. doi:10.1016/j.tem.2008.11.005.

    Article  CAS  Google Scholar 

  • Leifheit-Nestler, M., G. Conrad, N.-M. Heida, A. Limbourg, F.P. Limbourg, T. Seidler, M.R. Schroeter, G. Hasenfuss, S. Konstantinides, and K. Schäfer. 2010. Overexpression of integrin beta 5 enhances the paracrine properties of circulating angiogenic cells via Src kinase-mediated activation of STAT3. Arteriosclerosis, Thrombosis, and Vascular Biology 30: 1398–1406. doi:10.1161/ATVBAHA.110.206086.

    Article  CAS  PubMed  Google Scholar 

  • Lin, J.H., H. Li, D. Yasumura, H.R. Cohen, C. Zhang, B. Panning, K.M. Shokat, M.M. Lavail, and P. Walter. 2007. IRE1 signaling affects cell fate during the unfolded protein response. Science 318: 944–949. doi:10.1126/science.1146361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Q., Z. Gao, R.M. Alarcon, J. Ye, and Z. Yun. 2009. A role of miR-27 in the regulation of adipogenesis. The FEBS Journal 276: 2348–2358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lolmède, K., V. Durand de Saint Front, J. Galitzky, M. Lafontan, and A. Bouloumié. 2003. Effects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A adipocytes. International Journal of Obesity and Related Metabolic Disorders 27: 1187–1195. doi:10.1038/sj.ijo.0802407.

    Article  PubMed  CAS  Google Scholar 

  • Luther, J., K. Ubieta, N. Hannemann, M. Jimenez, M. Garcia, C. Zech, G. Schett, E.F. Wagner, and A. Bozec. 2014. Fra-2/AP-1 controls adipocyte differentiation and survival by regulating PPARγ and hypoxia. Cell Death and Differentiation 21: 655–664. doi:10.1038/cdd.2013.198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mack, I., R.S. BelAiba, T. Djordjevic, A. Görlach, H. Hauner, and B.L. Bader. 2009. Functional analyses reveal the greater potency of preadipocytes compared with adipocytes as endothelial cell activator under normoxia, hypoxia, and TNFalpha exposure. American Journal of Physiology: Endocrinology and Metabolism 297: E735–E748. doi:10.1152/ajpendo.90851.2008.

    CAS  PubMed  Google Scholar 

  • Mansfield, K.D., R.D. Guzy, Y. Pan, R.M. Young, T.P. Cash, P.T. Schumacker, and M.C. Simon. 2005. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metabolism 1: 393–399. doi:10.1016/j.cmet.2005.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall, C., A.J. Mamary, A.J. Verhoeven, and B.E. Marshall. 1996. Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. American Journal of Respiratory Cell and Molecular Biology 15: 633–644. doi:10.1165/ajrcmb.15.5.8918370.

    Article  CAS  PubMed  Google Scholar 

  • McQuaid, S.E., L. Hodson, M.J. Neville, A.L. Dennis, J. Cheeseman, S.M. Humphreys, T. Ruge, M. Gilbert, B.A. Fielding, K.N. Frayn, and F. Karpe. 2011. Downregulation of adipose tissue fatty acid trafficking in obesity: A driver for ectopic fat deposition? Diabetes 60: 47–55. doi:10.2337/db10-0867.

    Article  CAS  PubMed  Google Scholar 

  • Medina-Gomez, G., S. Gray, and A. Vidal-Puig. 2007. Adipogenesis and lipotoxicity: Role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). Public Health Nutrition 10: 1132–1137. doi:10.1017/S1368980007000614.

    Article  PubMed  Google Scholar 

  • Michailidou, Z., N.M. Morton, J.M. Moreno Navarrete, C.C. West, K.J. Stewart, J.M. Fernández-Real, C.J. Schofield, J.R. Seckl, and P.J. Ratcliffe. 2015. Adipocyte pseudohypoxia suppresses lipolysis and facilitates benign adipose tissue expansion. Diabetes 64: 733–745. doi:10.2337/db14-0233.

    Article  CAS  PubMed  Google Scholar 

  • Minet, E., G. Michel, D. Mottet, M. Raes, and C. Michiels. 2001. Transduction pathways involved in Hypoxia-Inducible Factor-1 phosphorylation and activation. Free Radical Biology & Medicine 31: 847–855.

    Article  CAS  Google Scholar 

  • Monteiro, R., P.M.S.T. de Castro, C. Calhau, and I. Azevedo. 2006. Adipocyte size and liability to cell death. Obesity Surgery 16: 804–806. doi:10.1381/096089206777346600.

    Article  PubMed  Google Scholar 

  • Ngo, D.T.M., M.G. Farb, R. Kikuchi, S. Karki, S. Tiwari, S.J. Bigornia, D.O. Bates, M.P. LaValley, N.M. Hamburg, J.A. Vita, D.T. Hess, K. Walsh, and N. Gokce. 2014. Antiangiogenic actions of vascular endothelial growth factor-A165b, an inhibitory isoform of vascular endothelial growth factor-A, in human obesity. Circulation 130: 1072–1080. doi:10.1161/CIRCULATIONAHA.113.008171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura, S., I. Manabe, M. Nagasaki, Y. Hosoya, H. Yamashita, H. Fujita, M. Ohsugi, K. Tobe, T. Kadowaki, R. Nagai, and S. Sugiura. 2007. Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes 56: 1517–1526. doi:10.2337/db06-1749.

    Article  CAS  PubMed  Google Scholar 

  • Niu, G., K.L. Wright, M. Huang, L. Song, E. Haura, J. Turkson, S. Zhang, T. Wang, D. Sinibaldi, D. Coppola, R. Heller, L.M. Ellis, J. Karras, J. Bromberg, D. Pardoll, R. Jove, and H. Yu. 2002. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21: 2000–2008. doi:10.1038/sj.onc.1205260.

    Article  CAS  PubMed  Google Scholar 

  • Oberkofler, H., N. Fukushima, H. Esterbauer, F. Krempler, and W. Patsch. 2002. Sterol regulatory element binding proteins: Relationship of adipose tissue gene expression with obesity in humans. Biochimica et Biophysica Acta 1575: 75–81.

    Article  CAS  PubMed  Google Scholar 

  • Ozcan, U., Q. Cao, E. Yilmaz, A.-H. Lee, N.N. Iwakoshi, E. Ozdelen, G. Tuncman, C. Görgün, L.H. Glimcher, and G.S. Hotamisligil. 2004. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306: 457–461. doi:10.1126/science.1103160.

    Article  PubMed  CAS  Google Scholar 

  • Pang, C., Z. Gao, J. Yin, J. Zhang, W. Jia, and J. Ye. 2008. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. American Journal of Physiology: Endocrinology and Metabolism 295: E313–E322. doi:10.1152/ajpendo.90296.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasarica, M., B. Gowronska-Kozak, D. Burk, I. Remedios, D. Hymel, J. Gimble, E. Ravussin, G.A. Bray, and S.R. Smith. 2009a. Adipose tissue collagen VI in obesity. The Journal of Clinical Endocrinology and Metabolism 94: 5155–5162. doi:10.1210/jc.2009-0947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasarica, M., O.R. Sereda, L.M. Redman, D.C. Albarado, D.T. Hymel, L.E. Roan, J.C. Rood, D.H. Burk, and S.R. Smith. 2009b. Reduced adipose tissue oxygenation in human obesity: Evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58: 718–725. doi:10.2337/db08-1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez de Heredia, F., I.S. Wood, and P. Trayhurn. 2010. Hypoxia stimulates lactate release and modulates monocarboxylate transporter (MCT1, MCT2, and MCT4) expression in human adipocytes. Pflügers Archiv 459: 509–518. doi:10.1007/s00424-009-0750-3.

    Article  PubMed  CAS  Google Scholar 

  • Pessin, J.E., and H. Kwon. 2012. How does high-fat diet induce adipose tissue fibrosis? Journal of Investigative Medicine 60: 1147–1150. doi:10.2310/JIM.0b013e318271fdb9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pino, E., H. Wang, M.E. McDonald, L. Qiang, and S.R. Farmer. 2012. Roles for peroxisome proliferator-activated receptor γ (PPARγ) and PPARγ coactivators 1α and 1β in regulating response of white and brown adipocytes to hypoxia. The Journal of Biological Chemistry 287: 18351–18358. doi:10.1074/jbc.M112.350918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao, L., and J. Shao. 2006. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. The Journal of Biological Chemistry 281: 39915–39924. doi:10.1074/jbc.M607215200.

    Article  CAS  PubMed  Google Scholar 

  • Rausch, M.E., S. Weisberg, P. Vardhana, and D.V. Tortoriello. 2008. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. International Journal of Obesity 32: 451–463. doi:10.1038/sj.ijo.0803744.

    Article  CAS  PubMed  Google Scholar 

  • Reisz-Porszasz, S., M.R. Probst, B.N. Fukunaga, and O. Hankinson. 1994. Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Molecular and Cellular Biology 14: 6075–6086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron, D., and J.F. Habener. 1992. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes & Development 6: 439–453.

    Article  CAS  Google Scholar 

  • San José, E., A.G. Sahuquillo, R. Bragado, and B. Alarcón. 1998. Assembly of the TCR/CD3 complex: CD3 epsilon/delta and CD3 epsilon/gamma dimers associate indistinctly with both TCR alpha and TCR beta chains. Evidence for a double TCR heterodimer model. European Journal of Immunology 28: 12–21.

    Article  PubMed  Google Scholar 

  • Shimano, H. 2009. SREBPs: Physiology and pathophysiology of the SREBP family. The FEBS Journal 276: 616–621. doi:10.1111/j.1742-4658.2008.06806.x.

    Article  CAS  PubMed  Google Scholar 

  • Simon, M.C. 2006. Mitochondrial reactive oxygen species are required for hypoxic HIF alpha stabilization. Adv. Exp. Med. Biol. 588: 165–170.

    Article  PubMed  Google Scholar 

  • Skurk, T., and H. Hauner. 2004. Obesity and impaired fibrinolysis: Role of adipose production of plasminogen activator inhibitor-1. International Journal of Obesity and Related Metabolic Disorders 28: 1357–1364. doi:10.1038/sj.ijo.0802778.

    Article  CAS  PubMed  Google Scholar 

  • Skurk, T., C. Herder, I. Kräft, S. Müller-Scholze, H. Hauner, and H. Kolb. 2005. Production and release of macrophage migration inhibitory factor from human adipocytes. Endocrinology 146: 1006–1011. doi:10.1210/en.2004-0924.

    Article  CAS  PubMed  Google Scholar 

  • Skurk, T., C. Alberti-Huber, C. Herder, and H. Hauner. 2007. Relationship between adipocyte size and adipokine expression and secretion. The Journal of Clinical Endocrinology and Metabolism 92: 1023–1033. doi:10.1210/jc.2006-1055.

    Article  CAS  PubMed  Google Scholar 

  • Snodgrass, R.G., M. Boß, E. Zezina, A. Weigert, N. Dehne, I. Fleming, B. Brüne, and D. Namgaladze. 2016. Hypoxia potentiates palmitate-induced pro-inflammatory activation of primary human macrophages. The Journal of Biological Chemistry 291: 413–424. doi:10.1074/jbc.M115.686709.

    Article  CAS  PubMed  Google Scholar 

  • Stockmann, C., Y. Kerdiles, M. Nomaksteinsky, A. Weidemann, N. Takeda, A. Doedens, A.X. Torres-Collado, L. Iruela-Arispe, V. Nizet, and R.S. Johnson. 2010. Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis. Proceedings of the National Academy of Sciences of the United States of America 107: 4329–4334. doi:10.1073/pnas.0912766107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strissel, K.J., Z. Stancheva, H. Miyoshi, J.W. Perfield, J. DeFuria, Z. Jick, A.S. Greenberg, and M.S. Obin. 2007. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56: 2910–2918. doi:10.2337/db07-0767.

    Article  CAS  PubMed  Google Scholar 

  • Sun, K., C.M. Kusminski, and P.E. Scherer. 2011. Adipose tissue remodeling and obesity. The Journal of Clinical Investigation 121: 2094–2101. doi:10.1172/JCI45887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, K., J. Park, O.T. Gupta, W.L. Holland, P. Auerbach, N. Zhang, R. Goncalves Marangoni, S.M. Nicoloro, M.P. Czech, J. Varga, T. Ploug, Z. An, and P.E. Scherer. 2014. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nature Communications 5: 3485. doi:10.1038/ncomms4485.

    PubMed  PubMed Central  Google Scholar 

  • Sung, H.-K., K.-O. Doh, J.E. Son, J.G. Park, Y. Bae, S. Choi, S.M.L. Nelson, R. Cowling, K. Nagy, I.P. Michael, G.Y. Koh, S.L. Adamson, T. Pawson, and A. Nagy. 2013. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metabolism 17: 61–72. doi:10.1016/j.cmet.2012.12.010.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K., K. Miyokawa-Gorin, K. Handa, A. Kitahara, R. Moriya, H. Onuma, Y. Sumitani, T. Tanaka, H. Katsuta, S. Nishida, K. Yoshimoto, H. Ohno, and H. Ishida. 2013. Endogenous oxidative stress, but not ER stress, induces hypoxia-independent VEGF120 release through PI3K-dependent pathways in 3T3-L1 adipocytes. Obesity (Silver Spring, Md.) 21: 1625–1634. doi:10.1002/oby.20206.

    Article  CAS  Google Scholar 

  • Tan, J.T.M., S.V. McLennan, W.W. Song, L.W.-Y. Lo, J.G. Bonner, P.F. Williams, and S.M. Twigg. 2008. Connective tissue growth factor inhibits adipocyte differentiation. American Journal of Physiology: Cell Physiology 295: C740–C751. doi:10.1152/ajpcell.00333.2007.

    Article  CAS  PubMed  Google Scholar 

  • Trayhurn, P. 2013. Hypoxia and adipose tissue function and dysfunction in obesity. Physiological Reviews 93: 1–21. doi:10.1152/physrev.00017.2012.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2014. Hypoxia and adipocyte physiology: Implications for adipose tissue dysfunction in obesity. Annual Review of Nutrition 34: 207–236. doi:10.1146/annurev-nutr-071812-161156.

    Article  CAS  PubMed  Google Scholar 

  • Trayhurn, P., B. Wang, and I.S. Wood. 2008. Hypoxia in adipose tissue: A basis for the dysregulation of tissue function in obesity? The British Journal of Nutrition 100: 227–235. doi:10.1017/S0007114508971282.

    Article  CAS  PubMed  Google Scholar 

  • Treins, C., S. Giorgetti-Peraldi, J. Murdaca, G.L. Semenza, and E. Van Obberghen. 2002. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. The Journal of Biological Chemistry 277: 27975–27981. doi:10.1074/jbc.M204152200.

    Article  CAS  PubMed  Google Scholar 

  • Turner, L., C. Scotton, R. Negus, and F. Balkwill. 1999. Hypoxia inhibits macrophage migration. European Journal of Immunology 29: 2280–2287. doi:10.1002/(SICI)1521-4141(199907)29:07<2280::AID-IMMU2280>3.0.CO;2-C.

    Article  CAS  PubMed  Google Scholar 

  • Turrens, J.F. 1997. Superoxide production by the mitochondrial respiratory chain. Bioscience Reports 17: 3–8.

    Article  CAS  PubMed  Google Scholar 

  • Van de Velde, S., M.F. Hogan, and M. Montminy. 2011. mTOR links incretin signaling to HIF induction in pancreatic beta cells. Proceedings of the National Academy of Sciences of the United States of America 108: 16876–16882. doi:10.1073/pnas.1114228108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter, P., and D. Ron. 2011. The unfolded protein response: From stress pathway to homeostatic regulation. Science 334: 1081–1086. doi:10.1126/science.1209038.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., I.S. Wood, and P. Trayhurn. 2008. Hypoxia induces leptin gene expression and secretion in human preadipocytes: Differential effects of hypoxia on adipokine expression by preadipocytes. The Journal of Endocrinology 198: 127–134. doi:10.1677/JOE-08-0156.

    Article  CAS  PubMed  Google Scholar 

  • Weisberg, S.P., D. McCann, M. Desai, M. Rosenbaum, R.L. Leibel, and A.W. Ferrante. 2003. Obesity is associated with macrophage accumulation in adipose tissue. The Journal of Clinical Investigation 112: 1796–1808. doi:10.1172/JCI19246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, I.S., F.P. de Heredia, B. Wang, and P. Trayhurn. 2009. Cellular hypoxia and adipose tissue dysfunction in obesity. The Proceedings of the Nutrition Society 68: 370–377. doi:10.1017/S0029665109990206.

    Article  CAS  PubMed  Google Scholar 

  • Wood, I.S., T. Stezhka, and P. Trayhurn. 2011. Modulation of adipokine production, glucose uptake and lactate release in human adipocytes by small changes in oxygen tension. Pflügers Archiv 462: 469–477. doi:10.1007/s00424-011-0985-7.

    Article  CAS  PubMed  Google Scholar 

  • Xu, X.J., M.-S. Gauthier, D.T. Hess, C.M. Apovian, J.M. Cacicedo, N. Gokce, M. Farb, R.J. Valentine, and N.B. Ruderman. 2012. Insulin sensitive and resistant obesity in humans: AMPK activity, oxidative stress, and depot-specific changes in gene expression in adipose tissue. Journal of Lipid Research 53: 792–801. doi:10.1194/jlr.P022905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, Y., F. Bi, X. Zhang, S. Zhang, Y. Pan, N. Liu, Y. Shi, X. Yao, Y. Zheng, and D. Fan. 2006. Role of Rac1 and Cdc42 in hypoxia induced p53 and von Hippel-Lindau suppression and HIF1alpha activation. International Journal of Cancer 118: 2965–2972. doi:10.1002/ijc.21763.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., L. Craddock, S. Hong, and Z.-M. Liu. 2009. AMP-activated protein kinase suppresses LXR-dependent sterol regulatory element-binding protein-1c transcription in rat hepatoma McA-RH7777 cells. Journal of Cellular Biochemistry 106: 414–426. doi:10.1002/jcb.22024.

    Article  CAS  PubMed  Google Scholar 

  • Ye, J. 2011. Adipose tissue vascularization: Its role in chronic inflammation. Current Diabetes Reports 11: 203–210. doi:10.1007/s11892-011-0183-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye, J., Z. Gao, J. Yin, and Q. He. 2007. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. American Journal of Physiology: Endocrinology and Metabolism 293: E1118–E1128. doi:10.1152/ajpendo.00435.2007.

    CAS  PubMed  Google Scholar 

  • Yin, J., Z. Gao, Q. He, D. Zhou, Z. Guo, and J. Ye. 2009. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. American Journal of Physiology: Endocrinology and Metabolism 296: E333–E342. doi:10.1152/ajpendo.90760.2008.

    CAS  PubMed  Google Scholar 

  • Yin, X., I.R. Lanza, J.M. Swain, M.G. Sarr, K.S. Nair, and M.D. Jensen. 2014. Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. The Journal of Clinical Endocrinology and Metabolism 99: E209–E216. doi:10.1210/jc.2013-3042.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., L. Shi, H. Wang, P.J. Bilan, Z. Yao, M.C. Samaan, Q. He, A. Klip, and W. Niu. 2011. Conditioned medium from hypoxia-treated adipocytes renders muscle cells insulin resistant. European Journal of Cell Biology 90: 1000–1015. doi:10.1016/j.ejcb.2011.06.004.

    Article  CAS  PubMed  Google Scholar 

  • Yun, Z., H.L. Maecker, R.S. Johnson, and A.J. Giaccia. 2002. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: A mechanism for regulation of adipogenesis by hypoxia. Developmental Cell 2: 331–341.

    Article  CAS  PubMed  Google Scholar 

  • Zagórska, A., and J. Dulak. 2004. HIF-1: The knowns and unknowns of hypoxia sensing. Acta Biochimica Polonica 51: 563–585.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atilla Engin M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Engin, A. (2017). Adipose Tissue Hypoxia in Obesity and Its Impact on Preadipocytes and Macrophages: Hypoxia Hypothesis. In: Engin, A., Engin, A. (eds) Obesity and Lipotoxicity. Advances in Experimental Medicine and Biology, vol 960. Springer, Cham. https://doi.org/10.1007/978-3-319-48382-5_13

Download citation

Publish with us

Policies and ethics