Skip to main content

Esophageal Cancer Biomarkers in Circulation

  • Chapter
  • First Online:
Cancer Biomarkers in Body Fluids
  • 1256 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quante M, Bhagat G, Abrams JA, et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell. 2012;21:36–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang X, Ouyang H, Yamamoto Y, et al. Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell. 2011;145:1023–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Takahashi T, Suzuki M, Shigematsu H, et al. Aberrant methylation of Reprimo in human malignancies. Int J Cancer. 2005;115:503–10.

    Article  CAS  PubMed  Google Scholar 

  4. Tischoff I, Hengge UR, Vieth M, et al. Methylation of SOCS-3 and SOCS-1 in the carcinogenesis of Barrett’s adenocarcinoma. Gut. 2007;56:1047–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schulmann K, Sterian A, Berki A, et al. Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett’s-associated neoplastic progression and predicts progression risk. Oncogene. 2005;24:4138–48.

    Article  CAS  PubMed  Google Scholar 

  6. Sato F, Jin Z, Schulmann K, et al. Three-tiered risk stratification model to predict progression in Barrett’s esophagus using epigenetic and clinical features. PLoS One. 2008;3:e1890.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Agarwal R, Jin Z, Yang J, et al. Epigenomic program of Barrett’s-associated neoplastic progression reveals possible involvement of insulin signaling pathways. Endocr Relat Cancer. 2012;19:L5–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Iwagami S, Baba Y, Watanabe M, et al. LINE-1 hypomethylation is associated with a poor prognosis among patients with curatively resected esophageal squamous cell carcinoma. Ann Surg. 2013;257:449–55.

    Article  PubMed  Google Scholar 

  9. Alvarez H, Opalinska J, Zhou L, et al. Widespread hypomethylation occurs early and synergizes with gene amplification during esophageal carcinogenesis. PLoS Genet. 2011;7:e1001356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Galipeau PC, Cowan DS, Sanchez CA, et al. 17p (p53) allelic losses, 4 N (G2/tetraploid) populations, and progression to aneuploidy in Barrett’s esophagus. Proc Natl Acad Sci USA. 1996;93:7081–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tomita H, Ichikawa D, Ikoma D, et al. Quantification of circulating plasma DNA fragments as tumor markers in patients with esophageal cancer. Anticancer Res. 2007;27:2737–41.

    CAS  PubMed  Google Scholar 

  12. Banki F, Yacoub WN, Hagen JA, et al. Plasma DNA is more reliable than carcinoembryonic antigen for diagnosis of recurrent esophageal cancer. J Am Coll Surg. 2008;207:30–5.

    Article  PubMed  Google Scholar 

  13. Kawakami K, Brabender J, Lord RV, et al. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst. 2000;92:1805–11.

    Article  CAS  PubMed  Google Scholar 

  14. Hoffmann AC, Vallbohmer D, Prenzel K, et al. Methylated DAPK and APC promoter DNA detection in peripheral blood is significantly associated with apparent residual tumor and outcome. J Cancer Res Clin Oncol. 2009;135:1231–7.

    Article  CAS  PubMed  Google Scholar 

  15. Ikoma D, Ichikawa D, Tani N, et al. [Plasma methylation-specific polymerase chain reaction as a diagnostic tool for esophageal cancer patients]. Gan To Kagaku Ryoho. 2006;33:1717–19.

    Google Scholar 

  16. Ikoma D, Ichikawa D, Ueda Y, et al. Circulating tumor cells and aberrant methylation as tumor markers in patients with esophageal cancer. Anticancer Res. 2007;27:535–9.

    PubMed  Google Scholar 

  17. Hibi K, Taguchi M, Nakayama H, et al. Molecular detection of p16 promoter methylation in the serum of patients with esophageal squamous cell carcinoma. Clin Cancer Res. 2001;7:3135–8.

    CAS  PubMed  Google Scholar 

  18. Jin Z, Olaru A, Yang J, et al. Hypermethylation of tachykinin-1 is a potential biomarker in human esophageal cancer. Clin Cancer Res. 2007;13:6293–300.

    Article  CAS  PubMed  Google Scholar 

  19. Ling ZQ, Zhao Q, Zhou SL, Mao WM. MSH2 promoter hypermethylation in circulating tumor DNA is a valuable predictor of disease-free survival for patients with esophageal squamous cell carcinoma. Eur J Surg Oncol. 2012;38:326–32.

    Article  CAS  PubMed  Google Scholar 

  20. Zhai R, Zhao Y, Su L, et al. Genome-wide DNA methylation profiling of cell-free serum DNA in esophageal adenocarcinoma and Barrett esophagus. Neoplasia. 2012;14:29–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eisenberger CF, Knoefel WT, Peiper M, et al. Squamous cell carcinoma of the esophagus can be detected by microsatellite analysis in tumor and serum. Clin Cancer Res. 2003;9:4178–83.

    CAS  PubMed  Google Scholar 

  22. Eisenberger CF, Stoecklein NH, Jazra S, et al. The detection of oesophageal adenocarcinoma by serum microsatellite analysis. Eur J Surg Oncol. 2006;32:954–60.

    Article  CAS  PubMed  Google Scholar 

  23. Wachowiak R, Kaifi JT, Schurr PG, et al. Similar patterns of loss of heterozygosity in serum of adenocarcinoma of the distal oesophagus and the cardia in early diagnosis. Anticancer Res. 2007;27:477–81.

    CAS  PubMed  Google Scholar 

  24. Yang YF, Li H, Xu XQ, et al. An expression of squamous cell carcinoma antigen 2 in peripheral blood within the different stages of esophageal carcinogenesis. Dis Esophagus. 2008;21:395–401.

    Article  CAS  PubMed  Google Scholar 

  25. Li H, Diao TY, Zhou ZY, et al. Relationship between the expression of hTERT and EYA4 mRNA in peripheral blood mononuclear cells with the progressive stages of carcinogenesis of the esophagus. J Exp Clin Cancer Res. 2009;28:145.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Takahashi S, Miura N, Harada T, et al. Prognostic impact of clinical course-specific mRNA expression profiles in the serum of perioperative patients with esophageal cancer in the ICU: a case control study. J Transl Med. 2010;8:103.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Qiao YF, Chen CG, Yue J, et al. Clinical significance of preoperative and postoperative cytokeratin 19 messenger RNA level in peripheral blood of esophageal cancer patients. Dis Esophagus. 2015.

    Google Scholar 

  28. Honma H, Kanda T, Ito H, et al. Squamous cell carcinoma-antigen messenger RNA level in peripheral blood predicts recurrence after resection in patients with esophageal squamous cell carcinoma. Surgery. 2006;139:678–85.

    Article  PubMed  Google Scholar 

  29. Hsu FM, Cheng JC, Chang YL, et al. Circulating mRNA Profiling in Esophageal Squamous Cell Carcinoma Identifies FAM84B As A Biomarker In Predicting Pathological Response to Neoadjuvant Chemoradiation. Sci Rep. 2015;5:10291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang C, Wang C, Chen X, et al. Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem. 2010;56:1871–9.

    Article  CAS  PubMed  Google Scholar 

  31. Komatsu S, Ichikawa D, Takeshita H, et al. Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer. 2011;105:104–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li BX, Yu Q, Shi ZL, et al. Circulating microRNAs in esophageal squamous cell carcinoma: association with locoregional staging and survival. Int J Clin Exp Med. 2015;8:7241–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu C, Wang C, Guan X, et al. Diagnostic and prognostic implications of a serum miRNA panel in oesophageal squamous cell carcinoma. PLoS One. 2014;9:e92292.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hirajima S, Komatsu S, Ichikawa D, et al. Clinical impact of circulating miR-18a in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer. 2013;108:1822–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Komatsu S, Ichikawa D, Takeshita H, et al. Circulating miR-18a: a sensitive cancer screening biomarker in human cancer. In Vivo. 2014;28:293–7.

    CAS  PubMed  Google Scholar 

  36. Zhang T, Wang Q, Zhao D, et al. The oncogenetic role of microRNA-31 as a potential biomarker in oesophageal squamous cell carcinoma. Clin Sci (Lond). 2011;121:437–47.

    Article  CAS  Google Scholar 

  37. Takeshita N, Hoshino I, Mori M, et al. Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer. 2013;108:644–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu H, Yao Y, Meng F, et al. Predictive Value of Serum miR-10b, miR-29c, and miR-205 as Promising Biomarkers in Esophageal Squamous Cell Carcinoma Screening. Medicine (Baltimore). 2015;94:e1558.

    Article  CAS  Google Scholar 

  39. He FC, Meng WW, Qu YH, et al. Expression of circulating microRNA-20a and let-7a in esophageal squamous cell carcinoma. World J Gastroenterol. 2015;21:4660–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hui B, Chen X, Hui L, et al. Serum miRNA expression in patients with esophageal squamous cell carcinoma. Oncol Lett. 2015;10:3008–12.

    PubMed  PubMed Central  Google Scholar 

  41. Liu R, Liao J, Yang M, et al. Circulating miR-155 expression in plasma: a potential biomarker for early diagnosis of esophageal cancer in humans. J Toxicol Environ Health A. 2012;75:1154–62.

    Article  CAS  PubMed  Google Scholar 

  42. Komatsu S, Ichikawa D, Takeshita H, et al. Prognostic impact of circulating miR-21 and miR-375 in plasma of patients with esophageal squamous cell carcinoma. Expert Opin Biol Ther. 2012;12(Suppl 1):S53–9.

    Article  CAS  PubMed  Google Scholar 

  43. Tanaka K, Miyata H, Yamasaki M, et al. Circulating miR-200c levels significantly predict response to chemotherapy and prognosis of patients undergoing neoadjuvant chemotherapy for esophageal cancer. Ann Surg Oncol. 2013;20(Suppl 3):S607–15.

    Article  PubMed  Google Scholar 

  44. Fu W, Pang L, Chen Y, et al. The microRNAs as prognostic biomarkers for survival in esophageal cancer: a meta-analysis. ScientificWorldJournal. 2014;2014:523979.

    PubMed  PubMed Central  Google Scholar 

  45. Guan S, Wang C, Chen X, et al. MiR-613: a novel diagnostic and prognostic biomarker for patients with esophageal squamous cell carcinoma. Tumour Biol. 2016;37:4383–91.

    Article  CAS  PubMed  Google Scholar 

  46. Tong YS, Wang XW, Zhou XL, et al. Identification of the long non-coding RNA POU3F3 in plasma as a novel biomarker for diagnosis of esophageal squamous cell carcinoma. Mol Cancer. 2015;14:3.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang H, Xia J, Wang K, Zhang J. Serum autoantibodies in the early detection of esophageal cancer: a systematic review. Tumour Biol. 2015;36:95–109.

    Article  PubMed  Google Scholar 

  48. Zhang J, Zhu Z, Liu Y, et al. Diagnostic value of multiple tumor markers for patients with esophageal carcinoma. PLoS One. 2015;10:e0116951.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zheng X, Xing S, Liu XM, et al. Establishment of using serum YKL-40 and SCCA in combination for the diagnosis of patients with esophageal squamous cell carcinoma. BMC Cancer. 2014;14:490.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang HQ, Wang RB, Yan HJ, et al. Prognostic significance of CYFRA21-1, CEA and hemoglobin in patients with esophageal squamous cancer undergoing concurrent chemoradiotherapy. Asian Pac J Cancer Prev. 2012;13:199–203.

    Article  PubMed  Google Scholar 

  51. Shimada H, Kitabayashi H, Nabeya Y, et al. Treatment response and prognosis of patients after recurrence of esophageal cancer. Surgery. 2003;133:24–31.

    Article  PubMed  Google Scholar 

  52. Wakatsuki M, Suzuki Y, Nakamoto S, et al. Clinical usefulness of CYFRA 21-1 for esophageal squamous cell carcinoma in radiation therapy. J Gastroenterol Hepatol. 2007;22:715–9.

    CAS  PubMed  Google Scholar 

  53. Yan HJ, Wang RB, Zhu KL, et al. Cytokeratin 19 fragment antigen 21-1 as an independent predictor for definitive chemoradiotherapy sensitivity in esophageal squamous cell carcinoma. Chin Med J (Engl). 2012;125:1410–5.

    CAS  Google Scholar 

  54. Mroczko B, Kozlowski M, Groblewska M, et al. The diagnostic value of the measurement of matrix metalloproteinase 9 (MMP-9), squamous cell cancer antigen (SCC) and carcinoembryonic antigen (CEA) in the sera of esophageal cancer patients. Clin Chim Acta. 2008;389:61–6.

    Article  CAS  PubMed  Google Scholar 

  55. Zaidi AH, Gopalakrishnan V, Kasi PM, et al. Evaluation of a 4-protein serum biomarker panel-biglycan, annexin-A6, myeloperoxidase, and protein S100-A9 (B-AMP)-for the detection of esophageal adenocarcinoma. Cancer. 2014;120:3902–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang X, Xu L, Shen J, et al. Metabolic signatures of esophageal cancer: NMR-based metabolomics and UHPLC-based focused metabolomics of blood serum. Biochim Biophys Acta. 1832;2013:1207–16.

    Google Scholar 

  57. Zhang J, Bowers J, Liu L, et al. Esophageal cancer metabolite biomarkers detected by LC-MS and NMR methods. PLoS One. 2012;7:e30181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu H, Xue R, Lu C, et al. Metabolomic study for diagnostic model of oesophageal cancer using gas chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:3111–7.

    Article  CAS  PubMed  Google Scholar 

  59. Bonavina L, Soligo D, Quirici N, et al. Bone marrow-disseminated tumor cells in patients with carcinoma of the esophagus or cardia. Surgery. 2001;129:15–22.

    Article  CAS  PubMed  Google Scholar 

  60. Stoecklein NH, Hosch SB, Bezler M, et al. Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell. 2008;13:441–53.

    Article  CAS  PubMed  Google Scholar 

  61. Nakamura T, Yasumura T, Hayashi K, et al. Immunocytochemical detection of circulating esophageal carcinoma cells by immunomagnetic separation. Anticancer Res. 2000;20:4739–44.

    CAS  PubMed  Google Scholar 

  62. Hiraiwa K, Takeuchi H, Hasegawa H, et al. Clinical significance of circulating tumor cells in blood from patients with gastrointestinal cancers. Ann Surg Oncol. 2008;15:3092–100.

    Article  PubMed  Google Scholar 

  63. Sclafani F, Smyth E, Cunningham D, et al. A pilot study assessing the incidence and clinical significance of circulating tumor cells in esophagogastric cancers. Clin Colorectal Cancer. 2014;13:94–9.

    Article  PubMed  Google Scholar 

  64. Ren C, He P, Zhang J, et al. Malignant characteristics of circulating tumor cells and corresponding primary tumor in a patient with esophageal squamous cell carcinoma before and after surgery. Cancer Biol Ther. 2011;11:633–8.

    Article  PubMed  Google Scholar 

  65. Hoffmann AC, Vallbohmer D, Grimminger P, et al. Preoperative survivin mRNA detection in peripheral blood is an independent predictor of outcome in esophageal carcinoma. Pharmacogenomics. 2010;11:341–7.

    Article  CAS  PubMed  Google Scholar 

  66. Cao M, Yie SM, Wu SM, et al. Detection of survivin-expressing circulating cancer cells in the peripheral blood of patients with esophageal squamous cell carcinoma and its clinical significance. Clin Exp Metastasis. 2009;26:751–8.

    Article  CAS  PubMed  Google Scholar 

  67. Nakashima S, Natsugoe S, Matsumoto M, et al. Clinical significance of circulating tumor cells in blood by molecular detection and tumor markers in esophageal cancer. Surgery. 2003;133:162–9.

    Article  PubMed  Google Scholar 

  68. Liu Z, Jiang M, Zhao J, Ju H. Circulating tumor cells in perioperative esophageal cancer patients: quantitative assay system and potential clinical utility. Clin Cancer Res. 2007;13:2992–7.

    Article  CAS  PubMed  Google Scholar 

  69. Setoyama T, Natsugoe S, Okumura H, et al. Isolated tumour cells in blood and E-cadherin expression in oesophageal squamous cell cancer. Br J Surg. 2007;94:984–91.

    Article  CAS  PubMed  Google Scholar 

  70. Hashimoto T, Kajiyama Y, Tsutsumi-Ishii Y, et al. Circulating micrometastases of esophageal cancer detected by carcinoembryonic antigen mRNA reverse transcriptase-polymerase chain reaction: clinical implications. Dis Esophagus. 2008;21:690–6.

    Article  CAS  PubMed  Google Scholar 

  71. Tanaka K, Yano M, Motoori M, et al. CEA-antigen and SCC-antigen mRNA expression in peripheral blood predict hematogenous recurrence after resection in patients with esophageal cancer. Ann Surg Oncol. 2010;17:2779–86.

    Article  PubMed  Google Scholar 

  72. Yin XD, Yuan X, Xue JJ, et al. Clinical significance of carcinoembryonic antigen-, cytokeratin 19-, or survivin-positive circulating tumor cells in the peripheral blood of esophageal squamous cell carcinoma patients treated with radiotherapy. Dis Esophagus. 2012;25:750–6.

    Article  PubMed  Google Scholar 

  73. Brattstrom D, Wagenius G, Sandstrom P, et al. Newly developed assay measuring cytokeratins 8, 18 and 19 in serum is correlated to survival and tumor volume in patients with esophageal carcinoma. Dis Esophagus. 2005;18:298–303.

    Article  CAS  PubMed  Google Scholar 

  74. Kaganoi J, Shimada Y, Kano M, et al. Detection of circulating oesophageal squamous cancer cells in peripheral blood and its impact on prognosis. Br J Surg. 2004;91:1055–60.

    Article  CAS  PubMed  Google Scholar 

  75. Koike M, Hibi K, Kasai Y, et al. Molecular detection of circulating esophageal squamous cell cancer cells in the peripheral blood. Clin Cancer Res. 2002;8:2879–82.

    CAS  PubMed  Google Scholar 

  76. Bobryshev YV, Killingsworth MC, Lord RV. Structural alterations of the mucosa stroma in the Barrett’s esophagus metaplasia-dysplasia-adenocarcinoma sequence. J Gastroenterol Hepatol. 2012;27:1498–504.

    Article  PubMed  Google Scholar 

  77. Liao J, Liu R, Yin L, Pu Y. Expression profiling of exosomal miRNAs derived from human esophageal cancer cells by Solexa high-throughput sequencing. Int J Mol Sci. 2014;15:15530–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liao J, Liu R, Shi YJ, et al. Exosome-shuttling microRNA-21 promotes cell migration and invasion-targeting PDCD4 in esophageal cancer. Int J Oncol. 2016;48(6):2567–79.

    PubMed  Google Scholar 

  79. Warnecke-Eberz U, Chon SH, Holscher AH, et al. Exosomal onco-miRs from serum of patients with adenocarcinoma of the esophagus: comparison of miRNA profiles of exosomes and matching tumor. Tumour Biol. 2015;36:4643–53.

    Article  CAS  PubMed  Google Scholar 

  80. Chiam K, Wang T, Watson DI, et al. Circulating Serum Exosomal miRNAs As Potential Biomarkers for Esophageal Adenocarcinoma. J Gastrointest Surg. 2015;19:1208–15.

    Article  PubMed  Google Scholar 

  81. Tanaka Y, Kamohara H, Kinoshita K, et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer. 2013;119:1159–67.

    Article  CAS  PubMed  Google Scholar 

  82. Li Y, An J, Huang S, et al. Esophageal cancer-derived microvesicles induce regulatory B cells. Cell Biochem Funct. 2015;33:308–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dakubo, G.D. (2017). Esophageal Cancer Biomarkers in Circulation. In: Cancer Biomarkers in Body Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-48360-3_5

Download citation

Publish with us

Policies and ethics