Skip to main content

Melanoma Biomarkers in Circulation

  • Chapter
  • First Online:
Cancer Biomarkers in Body Fluids
  • 1277 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24:4340–6.

    Article  CAS  PubMed  Google Scholar 

  2. Yokoyama S, Woods SL, Boyle GM, et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature. 2011;480:99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Slipicevic A, Holm R, Nguyen MT, et al. Expression of activated Akt and PTEN in malignant melanomas: relationship with clinical outcome. Am J Clin Pathol. 2005;124:528–36.

    Article  CAS  PubMed  Google Scholar 

  4. Stahl JM, Cheung M, Sharma A, et al. Loss of PTEN promotes tumor development in malignant melanoma. Cancer Res. 2003;63:2881–90.

    CAS  PubMed  Google Scholar 

  5. Wu H, Goel V, Haluska FG. PTEN signaling pathways in melanoma. Oncogene. 2003;22:3113–22.

    Article  CAS  PubMed  Google Scholar 

  6. Tsao H, Goel V, Wu H, et al. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol. 2004;122:337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–47.

    Article  CAS  PubMed  Google Scholar 

  8. Landi MT, Bauer J, Pfeiffer RM, et al. MC1R germline variants confer risk for BRAF-mutant melanoma. Science. 2006;313:521–2.

    Article  CAS  PubMed  Google Scholar 

  9. Clark Jr WH, Elder DE, Guerry D, et al. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol. 1984;15:1147–65.

    Article  PubMed  Google Scholar 

  10. Van Raamsdonk CD, Bezrookove V, Green G, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457:599–602.

    Article  CAS  PubMed  Google Scholar 

  11. Pinzani P, Salvianti F, Zaccara S, et al. Circulating cell-free DNA in plasma of melanoma patients: qualitative and quantitative considerations. Clin Chim Acta. 2011;412:2141–5.

    Article  CAS  PubMed  Google Scholar 

  12. Salvianti F, Pinzani P, Verderio P, et al. Multiparametric analysis of cell-free DNA in melanoma patients. PLoS One. 2012;7:e49843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mori T, O’Day SJ, Umetani N, et al. Predictive utility of circulating methylated DNA in serum of melanoma patients receiving biochemotherapy. J Clin Oncol. 2005;23:9351–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mori T, Martinez SR, O’Day SJ, et al. Estrogen receptor-alpha methylation predicts melanoma progression. Cancer Res. 2006;66:6692–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koyanagi K, Mori T, O’Day SJ, et al. Association of circulating tumor cells with serum tumor-related methylated DNA in peripheral blood of melanoma patients. Cancer Res. 2006;66:6111–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoshimoto S, Kuo CT, Chong KK, et al. AIM1 and LINE-1 epigenetic aberrations in tumor and serum relate to melanoma progression and disease outcome. J Invest Dermatol. 2012;132:1689–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marini A, Mirmohammadsadegh A, Nambiar S, et al. Epigenetic inactivation of tumor suppressor genes in serum of patients with cutaneous melanoma. J Invest Dermatol. 2006;126:422–31.

    Article  CAS  PubMed  Google Scholar 

  18. Shinozaki M, O’Day SJ, Kitago M, et al. Utility of circulating B-RAF DNA mutation in serum for monitoring melanoma patients receiving biochemotherapy. Clin Cancer Res. 2007;13:2068–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Daniotti M, Vallacchi V, Rivoltini L, et al. Detection of mutated BRAFV600E variant in circulating DNA of stage III-IV melanoma patients. Int J Cancer. 2007;120:2439–44.

    Article  CAS  PubMed  Google Scholar 

  20. Board RE, Ellison G, Orr MC, et al. Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142,886) advanced melanoma phase II study. Br J Cancer. 2009;101:1724–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ascierto PA, Minor D, Ribas A, et al. Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J Clin Oncol. 2013;31:3205–11.

    Article  CAS  PubMed  Google Scholar 

  22. Pinzani P, Salvianti F, Cascella R, et al. Allele specific Taqman-based real-time PCR assay to quantify circulating BRAFV600E mutated DNA in plasma of melanoma patients. Clin Chim Acta. 2010;411:1319–24.

    Article  CAS  PubMed  Google Scholar 

  23. Bidard FC, Madic J, Mariani P, et al. Detection rate and prognostic value of circulating tumor cells and circulating tumor DNA in metastatic uveal melanoma. Int J Cancer. 2014;134:1207–13.

    Article  CAS  PubMed  Google Scholar 

  24. Metz CH, Scheulen M, Bornfeld N, et al. Ultradeep sequencing detects GNAQ and GNA11 mutations in cell-free DNA from plasma of patients with uveal melanoma. Cancer Med. 2013;2:208–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fujiwara Y, Chi DD, Wang H, et al. Plasma DNA microsatellites as tumor-specific markers and indicators of tumor progression in melanoma patients. Cancer Res. 1999;59:1567–71.

    CAS  PubMed  Google Scholar 

  26. Taback B, Fujiwara Y, Wang HJ, et al. Prognostic significance of circulating microsatellite markers in the plasma of melanoma patients. Cancer Res. 2001;61:5723–6.

    CAS  PubMed  Google Scholar 

  27. Taback B, O’Day SJ, Hoon DS. Quantification of circulating DNA in the plasma and serum of cancer patients. Ann N Y Acad Sci. 2004;1022:17–24.

    Article  CAS  PubMed  Google Scholar 

  28. Fujimoto A, O’Day SJ, Taback B, et al. Allelic imbalance on 12q22-23 in serum circulating DNA of melanoma patients predicts disease outcome. Cancer Res. 2004;64:4085–8.

    Article  CAS  PubMed  Google Scholar 

  29. Takagi R, Nakamoto D, Mizoe JE, Tsujii H. LOH analysis of free DNA in the plasma of patients with mucosal malignant melanoma in the head and neck. Int J Clin Oncol. 2007;12:199–204.

    Article  CAS  PubMed  Google Scholar 

  30. Nakamoto D, Yamamoto N, Takagi R, et al. Detection of microsatellite alterations in plasma DNA of malignant mucosal melanoma using whole genome amplification. Bull Tokyo Dent Coll. 2008;49:77–87.

    Article  CAS  PubMed  Google Scholar 

  31. Kopreski MS, Benko FA, Kwak LW, Gocke CD. Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin Cancer Res. 1999;5:1961–5.

    CAS  PubMed  Google Scholar 

  32. Hasselmann DO, Rappl G, Rossler M, et al. Detection of tumor-associated circulating mRNA in serum, plasma and blood cells from patients with disseminated malignant melanoma. Oncol Rep. 2001;8:115–8.

    CAS  PubMed  Google Scholar 

  33. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang L, Huang J, Yang N, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA. 2006;103:9136–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gaur A, Jewell DA, Liang Y, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 2007;67:2456–68.

    Article  CAS  PubMed  Google Scholar 

  36. Mueller DW, Rehli M, Bosserhoff AK. miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J Invest Dermatol. 2009;129:1740–51.

    Article  CAS  PubMed  Google Scholar 

  37. Schultz J, Lorenz P, Gross G, et al. MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res. 2008;18:549–57.

    Article  CAS  PubMed  Google Scholar 

  38. Muller DW, Bosserhoff AK. Integrin beta 3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene. 2008;27:6698–706.

    Article  CAS  PubMed  Google Scholar 

  39. Bemis LT, Chen R, Amato CM, et al. MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res. 2008;68:1362–8.

    Article  CAS  PubMed  Google Scholar 

  40. Segura MF, Hanniford D, Menendez S, et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA. 2009;106:1814–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Felicetti F, Errico MC, Segnalini P, et al. MicroRNA-221 and −222 pathway controls melanoma progression. Expert Rev. Anticancer Ther. 2008;8:1759–65.

    Article  CAS  PubMed  Google Scholar 

  42. Felicetti F, Errico MC, Bottero L, et al. The promyelocytic leukemia zinc finger-microRNA-221/−222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res. 2008;68:2745–54.

    Article  CAS  PubMed  Google Scholar 

  43. Igoucheva O, Alexeev V. MicroRNA-dependent regulation of cKit in cutaneous melanoma. Biochem Biophys Res Commun. 2009;379:790–4.

    Article  CAS  PubMed  Google Scholar 

  44. Lodygin D, Tarasov V, Epanchintsev A, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7:2591–600.

    Article  CAS  PubMed  Google Scholar 

  45. Kanemaru H, Fukushima S, Yamashita J, et al. The circulating microRNA-221 level in patients with malignant melanoma as a new tumor marker. J Dermatol Sci. 2011;61:187–93.

    Article  CAS  PubMed  Google Scholar 

  46. Shiiyama R, Fukushima S, Jinnin M, et al. Sensitive detection of melanoma metastasis using circulating microRNA expression profiles. Melanoma Res. 2013;23:366–72.

    Article  CAS  PubMed  Google Scholar 

  47. Greenberg E, Besser MJ, Ben-Ami E, et al. A comparative analysis of total serum miRNA profiles identifies novel signature that is highly indicative of metastatic melanoma: a pilot study. Biomarkers. 2013;18:502–8.

    Article  CAS  PubMed  Google Scholar 

  48. Gaynor R, Irie R, Morton D, Herschman HR. S100 protein is present in cultured human malignant melanomas. Nature. 1980;286:400–1.

    Article  CAS  PubMed  Google Scholar 

  49. Nakajima T, Watanabe S, Sato Y, et al. Immunohistochemical demonstration of S100 protein in malignant melanoma and pigmented nevus, and its diagnostic application. Cancer. 1982;50:912–8.

    Article  CAS  PubMed  Google Scholar 

  50. Fagnart OC, Sindic CJ, Laterre C. Particle counting immunoassay of S100 protein in serum. Possible relevance in tumors and ischemic disorders of the central nervous system. Clin Chem. 1988;34:1387–91.

    CAS  PubMed  Google Scholar 

  51. Guo HB, Stoffel-Wagner B, Bierwirth T, et al. Clinical significance of serum S100 in metastatic malignant melanoma. Eur J Cancer. 1995;31A:924–8.

    Article  CAS  PubMed  Google Scholar 

  52. von Schoultz E, Hansson LO, Djureen E, et al. Prognostic value of serum analyses of S-100 beta protein in malignant melanoma. Melanoma Res. 1996;6:133–7.

    Article  Google Scholar 

  53. Henze G, Dummer R, Joller-Jemelka HI, et al. Serum S100—a marker for disease monitoring in metastatic melanoma. Dermatology. 1997;194:208–12.

    Article  CAS  PubMed  Google Scholar 

  54. Jury CS, McAllister EJ, MacKie RM. Rising levels of serum S100 protein precede other evidence of disease progression in patients with malignant melanoma. Br J Dermatol. 2000;143:269–74.

    Article  CAS  PubMed  Google Scholar 

  55. Abraha HD, Fuller LC, Du Vivier AW, et al. Serum S-100 protein: a potentially useful prognostic marker in cutaneous melanoma. Br J Dermatol. 1997;137:381–5.

    Article  CAS  PubMed  Google Scholar 

  56. Martenson ED, Hansson LO, Nilsson B, et al. Serum S-100b protein as a prognostic marker in malignant cutaneous melanoma. J Clin Oncol. 2001;19:824–31.

    CAS  PubMed  Google Scholar 

  57. Mocellin S, Zavagno G, Nitti D. The prognostic value of serum S100B in patients with cutaneous melanoma: a meta-analysis. Int J Cancer. 2008;123:2370–6.

    Article  CAS  PubMed  Google Scholar 

  58. Andres R, Mayordomo JI, Zaballos P, et al. Prognostic value of serum S-100B in malignant melanoma. Tumori. 2004;90:607–10.

    CAS  PubMed  Google Scholar 

  59. Diaz-Lagares A, Alegre E, Arroyo A, et al. Evaluation of multiple serum markers in advanced melanoma. Tumour Biol. 2011;32:1155–61.

    Article  CAS  PubMed  Google Scholar 

  60. Kruijff S, Bastiaannet E, Speijers MJ, et al. The value of pre operative S-100B and SUV in clinically stage III melanoma patients undergoing therapeutic lymph node dissection. Eur J Surg Oncol. 2011;37:225–32.

    Article  CAS  PubMed  Google Scholar 

  61. Egberts F, Pollex A, Egberts JH, et al. Long-term survival analysis in metastatic melanoma: Serum S100B is an independent prognostic marker and superior to LDH. Onkologie. 2008;31:380–4.

    Article  CAS  PubMed  Google Scholar 

  62. Wevers KP, Kruijff S, Speijers MJ, et al. S-100B: a stronger prognostic biomarker than LDH in stage IIIB-C melanoma. Ann Surg Oncol. 2013;20:2772–9.

    Article  CAS  PubMed  Google Scholar 

  63. Egberts F, Hitschler WN, Weichenthal M, Hauschild A. Prospective monitoring of adjuvant treatment in high-risk melanoma patients: lactate dehydrogenase and protein S-100B as indicators of relapse. Melanoma Res. 2009;19:31–5.

    Article  CAS  PubMed  Google Scholar 

  64. Smit LH, Nieweg OE, Mooi WJ, et al. Value of serum S-100B for prediction of distant relapse and survival in stage III B/C melanoma. Anticancer Res. 2008;28:2297–302.

    CAS  PubMed  Google Scholar 

  65. Egberts F, Kotthoff EM, Gerdes S, et al. Comparative study of YKL-40, S-100B and LDH as monitoring tools for Stage IV melanoma. Eur J Cancer. 2012;48:695–702.

    Article  CAS  PubMed  Google Scholar 

  66. Kruijff S, Bastiaannet E, Brouwers AH, et al. Use of S-100B to evaluate therapy effects during bevacizumab induction treatment in AJCC stage III melanoma. Ann Surg Oncol. 2012;19:620–6.

    Article  CAS  PubMed  Google Scholar 

  67. Hamberg AP, Korse CM, Bonfrer JM, de Gast GC. Serum S100B is suitable for prediction and monitoring of response to chemoimmunotherapy in metastatic malignant melanoma. Melanoma Res. 2003;13:45–9.

    Article  CAS  PubMed  Google Scholar 

  68. Hauschild A, Michaelsen J, Brenner W, et al. Prognostic significance of serum S100B detection compared with routine blood parameters in advanced metastatic melanoma patients. Melanoma Res. 1999;9:155–61.

    Article  CAS  PubMed  Google Scholar 

  69. Schiltz PM, Dillman RO, Korse CM, et al. Lack of elevation of serum S100B in patients with metastatic melanoma as a predictor of outcome after induction with an autologous vaccine of proliferating tumor cells and dendritic cells. Cancer Biother Radiopharm. 2008;23:214–21.

    Article  CAS  PubMed  Google Scholar 

  70. Smit LH, Korse CM, Hart AA, et al. Normal values of serum S-100B predict prolonged survival for stage IV melanoma patients. Eur J Cancer. 2005;41:386–92.

    Article  CAS  PubMed  Google Scholar 

  71. Ho J, de Moura MB, Lin Y, et al. Importance of glycolysis and oxidative phosphorylation in advanced melanoma. Mol Cancer. 2012;11:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hill BR, Levi C. Elevation of a serum component in neoplastic disease. Cancer Res. 1954;14:513–5.

    CAS  PubMed  Google Scholar 

  73. Finck SJ, Giuliano AE, Morton DL. LDH and melanoma. Cancer. 1983;51:840–3.

    Article  CAS  PubMed  Google Scholar 

  74. Sirott MN, Bajorin DF, Wong GY, et al. Prognostic factors in patients with metastatic malignant melanoma. a multivariate analysis. Cancer. 1993;72:3091–8.

    Article  CAS  PubMed  Google Scholar 

  75. Eton O, Legha SS, Moon TE, et al. Prognostic factors for survival of patients treated systemically for disseminated melanoma. J Clin Oncol. 1998;16:1103–11.

    CAS  PubMed  Google Scholar 

  76. Agarwala SS, Keilholz U, Gilles E, et al. LDH correlation with survival in advanced melanoma from two large, randomised trials (Oblimersen GM301 and EORTC 18951). Eur J Cancer. 2009;45:1807–14.

    Article  PubMed  Google Scholar 

  77. Plummer R, Lorigan P, Brown E, et al. Phase I–II study of plitidepsin and dacarbazine as first-line therapy for advanced melanoma. Br J Cancer. 2013;109:1451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marcus DM, Lowe M, Khan MK, et al. Prognostic factors for overall survival after radiosurgery for brain metastases from melanoma. Am J Clin Oncol. 2014;37:580–4.

    Article  PubMed  Google Scholar 

  79. Weide B, Elsasser M, Buttner P, et al. Serum markers lactate dehydrogenase and S100B predict independently disease outcome in melanoma patients with distant metastasis. Br J Cancer. 2012;107:422–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Meral R, Duranyildiz D, Tas F, et al. Prognostic significance of melanoma inhibiting activity levels in malignant melanoma. Melanoma Res. 2001;11:627–32.

    Article  CAS  PubMed  Google Scholar 

  81. Deichmann M, Benner A, Bock M, et al. S100-Beta, melanoma-inhibiting activity, and lactate dehydrogenase discriminate progressive from nonprogressive American Joint Committee on Cancer stage IV melanoma. J Clin Oncol. 1999;17:1891–6.

    CAS  PubMed  Google Scholar 

  82. Vucetic B, Rogan SA, Hrabac P, et al. Biological value of melanoma inhibitory activity serum concentration in patients with primary skin melanoma. Melanoma Res. 2008;18:201–7.

    Article  CAS  PubMed  Google Scholar 

  83. Hofmann MA, Gussmann F, Fritsche A, et al. Diagnostic value of melanoma inhibitory activity serum marker in the follow-up of patients with stage I or II cutaneous melanoma. Melanoma Res. 2009;19:17–23.

    Article  CAS  PubMed  Google Scholar 

  84. Hofmann MA, Schicke B, Fritsch A, et al. Impact of lymph node metastases on serum level of melanoma inhibitory activity in stage III melanoma patients. J Dermatol. 2011;38:880–6.

    CAS  PubMed  Google Scholar 

  85. Bosserhoff AK, Kaufmann M, Kaluza B, et al. Melanoma-inhibiting activity, a novel serum marker for progression of malignant melanoma. Cancer Res. 1997;57:3149–53.

    CAS  PubMed  Google Scholar 

  86. Stahlecker J, Gauger A, Bosserhoff A, et al. MIA as a reliable tumor marker in the serum of patients with malignant melanoma. Anticancer Res. 2000;20:5041–4.

    CAS  PubMed  Google Scholar 

  87. Bosserhoff AK, Dreau D, Hein R, et al. Melanoma inhibitory activity (MIA), a serological marker of malignant melanoma. Recent Results Cancer Res. 2001;158:158–68.

    Article  CAS  PubMed  Google Scholar 

  88. Schaller UC, Bosserhoff AK, Neubauer AS, et al. Melanoma inhibitory activity: a novel serum marker for uveal melanoma. Melanoma Res. 2002;12:593–9.

    Article  CAS  PubMed  Google Scholar 

  89. Ugurel S, Rappl G, Tilgen W, Reinhold U. Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J Clin Oncol. 2001;19:577–83.

    CAS  PubMed  Google Scholar 

  90. Osella-Abate S, Quaglino P, Savoia P, et al. VEGF-165 serum levels and tyrosinase expression in melanoma patients: Correlation with the clinical course. Melanoma Res. 2002;12:325–34.

    Article  CAS  PubMed  Google Scholar 

  91. Pelletier F, Bermont L, Puzenat E, et al. Circulating vascular endothelial growth factor in cutaneous malignant melanoma. Br J Dermatol. 2005;152:685–9.

    Article  CAS  PubMed  Google Scholar 

  92. Ascierto PA, Leonardi E, Ottaiano A, et al. Prognostic value of serum VEGF in melanoma patients: A pilot study. Anticancer Res. 2004;24:4255–8.

    CAS  PubMed  Google Scholar 

  93. Tas F, Duranyildiz D, Oguz H, et al. Circulating levels of vascular endothelial growth factor (VEGF), matrix metalloproteinase-3 (MMP-3), and BCL-2 in malignant melanoma. Med Oncol. 2008;25:431–6.

    Article  PubMed  Google Scholar 

  94. Vihinen PP, Hilli J, Vuoristo MS, et al. Serum VEGF-C is associated with metastatic site in patients with malignant melanoma. Acta Oncol. 2007;46:678–84.

    Article  CAS  PubMed  Google Scholar 

  95. Mouawad R, Spano JP, Comperat E, et al. Tumoural expression and circulating level of VEGFR-3 (Flt-4) in metastatic melanoma patients: Correlation with clinical parameters and outcome. Eur J Cancer. 2009;45:1407–14.

    Article  CAS  PubMed  Google Scholar 

  96. Sabatino M, Kim-Schulze S, Panelli MC, et al. Serum vascular endothelial growth factor and fibronectin predict clinical response to high-dose interleukin-2 therapy. J Clin Oncol. 2009;27:2645–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Letellier S, Garnier JP, Spy J, et al. Development of metastases in malignant melanoma is associated with an increase in the plasma L-dopa/L-tyrosine ratio. Melanoma Res. 1999;9:389–94.

    Article  CAS  PubMed  Google Scholar 

  98. Stoitchkov K, Letellier S, Garnier JP, et al. Melanoma progression and serum L-dopa/L-tyrosine ratio: A comparison with S100B. Melanoma Res. 2002;12:255–62.

    Article  CAS  PubMed  Google Scholar 

  99. Stoitchkov K, Letellier S, Garnier JP, et al. Evaluation of the serum L-dopa/L-tyrosine ratio as a melanoma marker. Melanoma Res. 2003;13:587–93.

    Article  CAS  PubMed  Google Scholar 

  100. Garnier JP, Letellier S, Cassinat B, et al. Clinical value of combined determination of plasma L-DOPA/tyrosine ratio, S100B, MIA and LDH in melanoma. Eur J Cancer. 2007;43:816–21.

    Article  CAS  PubMed  Google Scholar 

  101. Wakamatsu K, Yokochi M, Naito A, et al. Comparison of phaeomelanin and its precursor 5-S-cysteinyldopa in the serum of melanoma patients. Melanoma Res. 2003;13:357–63.

    Article  CAS  PubMed  Google Scholar 

  102. Forgber M, Trefzer U, Sterry W, Walden P. Proteome serological determination of tumor-associated antigens in melanoma. PLoS One. 2009;4:e5199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Suzuki A, Iizuka A, Komiyama M, et al. Identification of melanoma antigens using a Serological Proteome Approach (SERPA). Cancer Genomics Proteomics. 2010;7:17–23.

    CAS  PubMed  Google Scholar 

  104. Liu Y, He J, Xie X, et al. Serum autoantibody profiling using a natural glycoprotein microarray for the prognosis of early melanoma. J Proteome Res. 2010;9:6044–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sabel MS, Liu Y, Griffith KA, et al. Clinical utility of serum autoantibodies detected by protein microarray in melanoma. Int J Proteomics. 2011;2011:413742.

    PubMed  PubMed Central  Google Scholar 

  106. Hiura Y, Nakanishi T, Tanioka M, et al. Identification of autoantibodies for alpha and gamma-enolase in serum from a patient with melanoma. Jpn Clin Med. 2011;2:35–41.

    PubMed  PubMed Central  Google Scholar 

  107. Greco M, Mitri MD, Chiriaco F, et al. Serum proteomic profile of cutaneous malignant melanoma and relation to cancer progression: association to tumor derived alpha-N-acetylgalactosaminidase activity. Cancer Lett. 2009;283:222–9.

    Article  CAS  PubMed  Google Scholar 

  108. Matharoo-Ball B, Ratcliffe L, Lancashire L, et al. Diagnostic biomarkers differentiating metastatic melanoma patients from healthy controls identified by an integrated MALDI-TOF mass spectrometry/bioinformatic approach. Proteomics Clin Appl. 2007;1:605–20.

    Article  CAS  PubMed  Google Scholar 

  109. Mian S, Ugurel S, Parkinson E, et al. Serum proteomic fingerprinting discriminates between clinical stages and predicts disease progression in melanoma patients. J Clin Oncol. 2005;23:5088–93.

    Article  CAS  PubMed  Google Scholar 

  110. Caron J, Mange A, Guillot B, Solassol J. Highly sensitive detection of melanoma based on serum proteomic profiling. J Cancer Res Clin Oncol. 2009;135:1257–64.

    Article  CAS  PubMed  Google Scholar 

  111. Findeisen P, Zapatka M, Peccerella T, et al. Serum amyloid A as a prognostic marker in melanoma identified by proteomic profiling. J Clin Oncol. 2009;27:2199–208.

    Article  CAS  PubMed  Google Scholar 

  112. Wilson LL, Tran L, Morton DL, Hoon DS. Detection of differentially expressed proteins in early-stage melanoma patients using SELDI-TOF mass spectrometry. Ann NY Acad Sci. 2004;1022:317–22.

    Article  CAS  PubMed  Google Scholar 

  113. Longo C, Gambara G, Espina V, et al. A novel biomarker harvesting nanotechnology identifies Bak as a candidate melanoma biomarker in serum. Exp Dermatol. 2011;20:29–34.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Mocellin S, Hoon D, Ambrosi A, et al. The prognostic value of circulating tumor cells in patients with melanoma: a systematic review and meta-analysis. Clin Cancer Res. 2006;12:4605–13.

    Article  CAS  PubMed  Google Scholar 

  115. Smith B, Selby P, Southgate J, et al. Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet. 1991;338:1227–9.

    Article  CAS  PubMed  Google Scholar 

  116. Quaglino P, Osella-Abate S, Cappello N, et al. Prognostic relevance of baseline and sequential peripheral blood tyrosinase expression in 200 consecutive advanced metastatic melanoma patients. Melanoma Res. 2007;17:75–82.

    Article  CAS  PubMed  Google Scholar 

  117. Tsao H, Nadiminti U, Sober AJ, Bigby M. A meta-analysis of reverse transcriptase-polymerase chain reaction for tyrosinase mRNA as a marker for circulating tumor cells in cutaneous melanoma. Arch Dermatol. 2001;137:325–30.

    CAS  PubMed  Google Scholar 

  118. Curry BJ, Myers K, Hersey P. MART-1 is expressed less frequently on circulating melanoma cells in patients who develop distant compared with locoregional metastases. J Clin Oncol. 1999;17:2562–71.

    CAS  PubMed  Google Scholar 

  119. Palmieri G, Ascierto PA, Perrone F, et al. Prognostic value of circulating melanoma cells detected by reverse transcriptase-polymerase chain reaction. J Clin Oncol. 2003;21:767–73.

    Article  CAS  PubMed  Google Scholar 

  120. Palmieri G, Satriano SM, Budroni M, et al. Serial detection of circulating tumour cells by reverse transcriptase-polymerase chain reaction assays is a marker for poor outcome in patients with malignant melanoma. BMC Cancer. 2006;6:266.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Koyanagi K, O’Day SJ, Gonzalez R, et al. Microphthalmia transcription factor as a molecular marker for circulating tumor cell detection in blood of melanoma patients. Clin Cancer Res. 2006;12:1137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Samija I, Lukac J, Maric-Brozic J, Kusic Z. Microphthalmia-associated transcription factor and tyrosinase as markers of melanoma cells in blood of patients with melanoma. Croat Med J. 2004;45:142–8.

    PubMed  Google Scholar 

  123. Carreira S, Goodall J, Denat L, et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. 2006;20:3426–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Takeuchi H, Taback B, Kuo C, Hoon DS. Clinicopathological utility of molecular staging for melanoma patients undergoing sentinel lymphadenectomy. Ann Surg Oncol. 2004;11:152S–5S.

    Article  PubMed  Google Scholar 

  125. Kuo CT, Hoon DS, Takeuchi H, et al. Prediction of disease outcome in melanoma patients by molecular analysis of paraffin-embedded sentinel lymph nodes. J Clin Oncol. 2003;21:3566–72.

    Article  PubMed  Google Scholar 

  126. Scoggins CR, Ross MI, Reintgen DS, et al. Prospective multi-institutional study of reverse transcriptase polymerase chain reaction for molecular staging of melanoma. J Clin Oncol. 2006;24:2849–57.

    Article  CAS  PubMed  Google Scholar 

  127. Fusi A, Collette S, Busse A, et al. Circulating melanoma cells and distant metastasis-free survival in stage III melanoma patients with or without adjuvant interferon treatment (EORTC 18991 side study). Eur J Cancer. 2009;45:3189–97.

    Article  CAS  PubMed  Google Scholar 

  128. Hoshimoto S, Shingai T, Morton DL, et al. Association between circulating tumor cells and prognosis in patients with stage III melanoma with sentinel lymph node metastasis in a phase III international multicenter trial. J Clin Oncol. 2012;30:3819–26.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Khoja L, Lorigan P, Zhou C, et al. Biomarker utility of circulating tumor cells in metastatic cutaneous melanoma. J Invest Dermatol. 2013;133:1582–90.

    Article  CAS  PubMed  Google Scholar 

  130. Hoshimoto S, Faries MB, Morton DL, et al. Assessment of prognostic circulating tumor cells in a phase III trial of adjuvant immunotherapy after complete resection of stage IV melanoma. Ann Surg. 2012;255:357–62.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Quaglino P, Savoia P, Fierro MT, et al. Clinical significance of sequential tyrosinase expression in the peripheral blood of disease-free melanoma patients: A review of literature data. Melanoma Res. 2004;14:S17–9.

    Article  CAS  PubMed  Google Scholar 

  132. Callejo SA, Antecka E, Blanco PL, et al. Identification of circulating malignant cells and its correlation with prognostic factors and treatment in uveal melanoma. A prospective longitudinal study. Eye (Lond). 2007;21:752–9.

    Article  CAS  Google Scholar 

  133. Boldin I, Langmann G, Richtig E, et al. Five-year results of prognostic value of tyrosinase in peripheral blood of uveal melanoma patients. Melanoma Res. 2005;15:503–7.

    Article  CAS  PubMed  Google Scholar 

  134. Schuster R, Bechrakis NE, Stroux A, et al. Circulating tumor cells as prognostic factor for distant metastases and survival in patients with primary uveal melanoma. Clin Cancer Res. 2007;13:1171–8.

    Article  CAS  PubMed  Google Scholar 

  135. Schuster R, Bechrakis NE, Stroux A, et al. Prognostic relevance of circulating tumor cells in metastatic uveal melanoma. Oncology. 2011;80:57–62.

    Article  CAS  PubMed  Google Scholar 

  136. Mazzini C, Pinzani P, Salvianti F, et al. Circulating tumor cells detection and counting in uveal melanomas by a filtration-based method. Cancers (Basel). 2014;6:323–32.

    Article  CAS  Google Scholar 

  137. Ulmer A, Beutel J, Susskind D, et al. Visualization of circulating melanoma cells in peripheral blood of patients with primary uveal melanoma. Clin Cancer Res. 2008;14:4469–74.

    Article  CAS  PubMed  Google Scholar 

  138. Suesskind D, Ulmer A, Schiebel U, et al. Circulating melanoma cells in peripheral blood of patients with uveal melanoma before and after different therapies and association with prognostic parameters: a pilot study. Acta Ophthalmol. 2011;89:17–24.

    Article  CAS  PubMed  Google Scholar 

  139. Alegre E, Zubiri L, Perez-Gracia JL, et al. Circulating melanoma exosomes as diagnostic and prognosis biomarkers. Clin Chim Acta. 2016;454:28–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dakubo, G.D. (2017). Melanoma Biomarkers in Circulation. In: Cancer Biomarkers in Body Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-48360-3_1

Download citation

Publish with us

Policies and ethics