Skip to main content

Retrotransposon-Derived Regulatory Regions and Transcripts in Stemness

  • Chapter
  • First Online:
Human Retrotransposons in Health and Disease
  • 846 Accesses

Summary

Transposable elements (TEs) have contributed greatly to the regulatory landscape of many cell types, including to human embryonic stem cells. In this chapter we summarize recent studies that have shown that TE insertions have silenced nearby genes, introduced transcription factor-binding sites, as well as produced novel transcripts including those that are translated into viral particles and those that are functional as noncoding RNA. We focus on presenting results on human and other mammalian pluripotent stem cells because of their importance in studying human health and evolution. Finally we also discuss the applications, implications, and questions that are raised from this newfound knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ERV:

Endogenous retrovirus

ESC:

Embryonic stem cell

HERVH:

Human endogenous retrovirus histidine

iPSC:

Induced PSC

LINE:

Long interspersed nuclear element

lncRNA:

Long noncoding RNA

LTR:

Long terminal repeat

PSC:

Pluripotent stem cell

RABS:

Repeat associated binding site

SINE:

Short interspersed nuclear element

TE:

Transposable element

TF:

Transcription factor

TFBS:

Transcription factor-binding site

References

  • Armbruester V et al (2002) A novel gene from the human endogenous retrovirus K expressed in transformed cells. Clin Cancer Res 8(6):1800–1807

    CAS  PubMed  Google Scholar 

  • Bénit L et al (1999) ERV-L elements: a family of endogenous retrovirus-like elements active throughout the evolution of mammals. J Virol 73(4):3301–3308

    PubMed  PubMed Central  Google Scholar 

  • Bourque G (2009) Transposable elements in gene regulation and in the evolution of vertebrate genomes. Curr Opin Genet Dev 19(6):607–612

    Article  CAS  PubMed  Google Scholar 

  • Bourque G et al (2008) Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res 18(11):1752–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabili MN et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro-Diaz N et al (2014) Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev 28(13):1397–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L-L, Carmichael GG (2009) Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell 35(4):467–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuong EB (2013) Retroviruses facilitate the rapid evolution of the mammalian placenta. Bioessays 35(10):853–861

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Los Angeles A et al (2015) Hallmarks of pluripotency. Nature 525(7570):469–478

    Article  PubMed  Google Scholar 

  • Dinger ME et al (2008) Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 18(9):1433–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elisaphenko EA et al (2008) A dual origin of the Xist gene from a protein-coding gene and a Set of transposable elements. PLoS One 3(6):e2521

    Article  PubMed  PubMed Central  Google Scholar 

  • Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15(1):7–21

    Article  CAS  PubMed  Google Scholar 

  • Fort A et al (2014) Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat Genet 46(6):558–566

    Article  CAS  PubMed  Google Scholar 

  • Friedli M et al (2014) Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency. Genome Res 24(8):1251–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs NV et al (2013) Human endogenous retrovirus K (HML-2) RNA and protein expression is a marker for human embryonic and induced pluripotent stem cells. Retrovirology 10(1):1–6

    Article  Google Scholar 

  • Garcia-Perez JL et al (2007) LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet 16(13):1569–1577

    Article  CAS  PubMed  Google Scholar 

  • Gifford R, Tristem M (2003) The evolution, distribution and diversity of endogenous retroviruses. Virus Genes 26(3):291–315

    Article  CAS  PubMed  Google Scholar 

  • Göke J et al (2015) Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. Cell Stem Cell 16(2):135–141

    Article  PubMed  Google Scholar 

  • Greenwood AD, Englbrecht CC, MacPhee RDE (2004) Characterization of an endogenous retrovirus class in elephants and their relatives. BMC Evol Biol 4(1):1–10

    Article  Google Scholar 

  • Grow EJ et al (2015) Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522(7555):221–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364):295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanke K, Hohn O, Bannert N (2016) HERV-K(HML-2), a seemingly silent subtenant—but still waters run deep. APMIS 124(1–2):67–87

    Article  CAS  PubMed  Google Scholar 

  • Heidmann O et al (2009) Identification of an endogenous retroviral envelope gene with fusogenic activity and placenta-specific expression in the rabbit: a new “syncytin” in a third order of mammals. Retrovirology 6(1):1–11

    Article  Google Scholar 

  • Ivey KN, Srivastava D (2010) MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7(1):36–41

    Article  CAS  PubMed  Google Scholar 

  • Izsvák Z et al (2016) Pluripotency and the endogenous retrovirus HERVH: conflict or serendipity? Bioessays 38(1):109–117

    Article  PubMed  Google Scholar 

  • Jacobs FMJ et al (2014) An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516(7530):242–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacques P-É, Jeyakani J, Bourque G (2013) The majority of primate-specific regulatory sequences Are derived from transposable elements. PLoS Genet 9(5):e1003504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji P et al (2016) Induced pluripotent stem cells: generation strategy and epigenetic mystery behind reprogramming. Stem Cells Int 2016:8415010

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson JM et al (2005) Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet 21(2):93–102

    Article  CAS  PubMed  Google Scholar 

  • Kapranov P et al (2010) The majority of total nuclear-encoded non-ribosomal RNA in a human cell is ‘dark matter’ un-annotated RNA. BMC Biol 8(1):1–15

    Article  Google Scholar 

  • Kapusta A et al (2013) Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 9(4):e1003470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karimi MM et al (2011) DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements and chimaeric transcripts in mouse ES cells. Cell Stem Cell 8(6):676–687. doi:10.1016/j.stem.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  • Kelley D, Rinn J (2012) Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol 13(11):R107

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S, Yu N-K, Kaang B-K (2015) CTCF as a multifunctional protein in genome regulation and gene expression. Exp Mol Med 47(6):e166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klawitter S et al (2016) Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat Commun 7:10286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunarso G et al (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42(7):631–634

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara T et al (2009) Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 12(9):1097–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewer S et al (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42(12):1113–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X et al (2014) The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol 21(4):423–425

    Article  CAS  PubMed  Google Scholar 

  • Macfarlan TS et al (2012) Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487(7405):57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macia A et al (2011) Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol Cell Biol 31(2):300–316

    Article  CAS  PubMed  Google Scholar 

  • Martello G, Bertone P, Smith A (2013) Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor. EMBO J 32(19):2561–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsui K et al (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S et al (2013) Dynamic evolution of endogenous retrovirus-derived genes expressed in bovine conceptuses during the period of placentation. Genome Biol Evol 5(2):296–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Närvä E et al (2012) RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells 30(3):452–460

    Article  PubMed  PubMed Central  Google Scholar 

  • Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4(6):487–492

    Article  CAS  PubMed  Google Scholar 

  • Nichols J, Smith A (2012) Pluripotency in the embryo and in culture. Cold Spring Harb Perspect Biol 4(8):a008128

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker R, Sheth U (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25(5):635–646

    Article  CAS  PubMed  Google Scholar 

  • Qiu C et al (2010) Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Res 38(4):1240–1248

    Article  CAS  PubMed  Google Scholar 

  • Ramírez MA et al (2006) Transcriptional and post-transcriptional regulation of retrotransposons IAP and MuERV-L affect pluripotency of mice ES cells. Reprod Biol Endocrinol 4(1):1–12

    Article  Google Scholar 

  • Rebollo R, Romanish MT, Mager DL (2012) Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 46(1):21–42

    Article  CAS  PubMed  Google Scholar 

  • Reynolds N et al (2012) NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment. Cell Stem Cell 10(5):583–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribet D et al (2008) Murine endogenous retrovirus MuERV-L is the progenitor of the “Orphan” epsilon viruslike particles of the early mouse embryo. J Virol 82(3):1622–1625

    Article  CAS  PubMed  Google Scholar 

  • Robbez-Masson L, Rowe HM (2015) Retrotransposons shape species-specific embryonic stem cell gene expression. Retrovirology 12(1):1–12

    Article  CAS  Google Scholar 

  • Romito A, Cobellis G (2016) Pluripotent stem cells: current understanding and future directions. Stem Cells Int 2016:9451492

    Article  PubMed  Google Scholar 

  • Rowe HM, Trono D (2011) Dynamic control of endogenous retroviruses during development. Virology 411(2):273–287

    Article  CAS  PubMed  Google Scholar 

  • Rowe HM et al (2013) TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. Genome Res 23(3):452–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoni FA, Guerra J, Luban J (2012) HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology 9(1):1–15

    Article  Google Scholar 

  • Schlesinger S, Goff SP (2015) Retroviral transcriptional regulation and embryonic stem cells: war and peace. Mol Cell Biol 35(5):770–777

    Article  PubMed  Google Scholar 

  • Schmidt D et al (2012) Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148(1):335–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J et al (2015) An ESRG-interacting protein, COXII, is involved in pro-apoptosis of human embryonic stem cells. Biochem Biophys Res Commun 460(2):130–135

    Article  CAS  PubMed  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8(4):272–285

    Article  CAS  PubMed  Google Scholar 

  • Subramanian RP et al (2011) Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology 8(1):1–22

    Article  Google Scholar 

  • Sundaram V et al (2014) Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res 24(12):1963–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Tang X et al (2013) Systematically profiling and annotating long intergenic non-coding RNAs in human embryonic stem cell. BMC Genomics 14(Suppl 5):S3

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T et al (2007) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci 104(47):18613–18618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2013) Endogenous miRNA Sponge lincRNA-RoR Regulates Oct4, Nanog, and Sox2 in Human Embryonic Stem Cell Self-Renewal. Dev Cell 25(1):69–80

    Article  CAS  PubMed  Google Scholar 

  • Wang J et al (2014) Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516(7531):405–409

    Article  CAS  PubMed  Google Scholar 

  • Wang J et al (2016) Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression. Nat Protoc 11(2):327–346

    Article  CAS  PubMed  Google Scholar 

  • Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21(6):354–361

    Article  CAS  PubMed  Google Scholar 

  • Weinberger L et al (2016) Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 17(3):155–169

    Article  CAS  PubMed  Google Scholar 

  • Wolf G et al (2015) The KRAB zinc finger protein ZFP809 is required to initiate epigenetic silencing of endogenous retroviruses. Genes Dev 29(5):538–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong RC-B et al (2011) L1TD1 is a marker for undifferentiated human embryonic stem cells. PLoS One 6(4):e19355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye S et al (2013) Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1. EMBO J 32(19):2548–2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Canadian Institute for Health Research (CIHR-MOP-115090). GB is supported by the Fonds de Recherche Santé Québec (FRSQ-25348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bourque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Su, Z., Bourque, G. (2017). Retrotransposon-Derived Regulatory Regions and Transcripts in Stemness. In: Cristofari, G. (eds) Human Retrotransposons in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-48344-3_8

Download citation

Publish with us

Policies and ethics