Skip to main content

Activity of Retrotransposons in Stem Cells and Differentiated Cells

  • Chapter
  • First Online:
Book cover Human Retrotransposons in Health and Disease

Abstract

Transposable elements (TEs) are major components of mammalian genomes, accounting for approximately half of the human genome. These elements have contributed to the current structure of the human genome in a myriad of ways. Indeed, the activity of TEs is increasingly recognized as a major force in the evolution of eukaryotic genomes. However, TE insertions and TE-mediated genomic rearrangements can become a serious threat to genome stability. TEs have all the characteristics associated with “selfish DNA” due to their inherent ability to mobilize and amplify within genomes. Nonetheless, there are numerous cases where a TE is co-opted by the host to create a new gene or modify genomic regulation. Hence, a new TE insertion could have a mutagenic, neutral, or beneficial effect. In recent years, there has been an emergence of interest in mobile elements in mammals, specially their biology in humans. However, we still have an incomplete picture of their biology and impact. In this chapter, we will focus on a type of human TE, Long INterspersed Elements class 1 (LINE-1 or L1), a widespread distributed retrotransposon capable of mobilization in humans. LINE-1s, as a prototype of selfish DNA, can generate new copies of themselves that can be transmitted to the next generation. Indeed, LINE-1 mobilization during early embryonic developmental stages or in germ cells ensures its transmission to the next generation. Surprisingly, and despite not being a characteristic associated with selfish DNA, there is growing evidence demonstrating that the activity of L1s can further impact the somatic human genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrusan G (2012) Somatic transposition in the brain has the potential to influence the biosynthesis of metabolites involved in Parkinson’s disease and schizophrenia. Biol Direct 7:41. doi:10.1186/1745-6150-7-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali M, Veale DJ, Reece RJ, Quinn M, Henshaw K, Zanders ED, Markham AF, Emery P, Isaacs JD (2003) Overexpression of transcripts containing LINE-1 in the synovia of patients with rheumatoid arthritis. Ann Rheum Dis 62(7):663–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alisch RS, Garcia-Perez JL, Muotri AR, Gage FH, Moran JV (2006) Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev 20(2):210–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An W, Han JS, Wheelan SJ, Davis ES, Coombes CE, Ye P, Triplett C, Boeke JD (2006) Active retrotransposition by a synthetic L1 element in mice. Proc Natl Acad Sci U S A 103(49):18662–18667. doi:10.1073/pnas.0605300103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318(5851):761–764. doi:10.1126/science.1146484

    Article  CAS  PubMed  Google Scholar 

  • Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31(6):785–799. doi:10.1016/j.molcel.2008.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Athanikar JN, Badge RM, Moran JV (2004) A YY1-binding site is required for accurate human LINE-1 transcription initiation. Nucleic Acids Res 32(13):3846–3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513(5):532–541. doi:10.1002/cne.21974

    Article  PubMed  Google Scholar 

  • Babushok DV, Ostertag EM, Courtney CE, Choi JM, Kazazian HH Jr (2006) L1 integration in a transgenic mouse model. Genome Res 16(2):240–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badge RM, Alisch RS, Moran JV (2003) ATLAS: a system to selectively identify human-specific L1 insertions. Am J Hum Genet 72(4):823–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F, Brennan PM, Rizzu P, Smith S, Fell M, Talbot RT, Gustincich S, Freeman TC, Mattick JS, Hume DA, Heutink P, Carninci P, Jeddeloh JA, Faulkner GJ (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479(7374):534–537. doi:10.1038/nature10531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck CR, Garcia-Perez JL, Badge RM, Moran JV (2011) LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 12:187–215. doi:10.1146/annurev-genom-082509-141802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker KG, Swergold GD, Ozato K, Thayer RE (1993) Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. Hum Mol Genet 2(10):1697–1702

    Article  CAS  PubMed  Google Scholar 

  • Belancio VP, Hedges DJ, Deininger P (2008a) Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res 18(3):343–358

    Article  CAS  PubMed  Google Scholar 

  • Belancio VP, Roy-Engel AM, Deininger P (2008b) The impact of multiple splice sites in human L1 elements. Gene 411(1–2):38–45. doi:10.1016/j.gene.2007.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belancio VP, Deininger P, Roy-Engel AM (2009) LINE dancing in the human genome: transposable elements and disease. Genome Med 1(10):97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belancio VP, Roy-Engel AM, Deininger PL (2010a) All y’all need to know ’bout retroelements in cancer. Semin Cancer Biol 20(4):200–210. doi:10.1016/j.semcancer.2010.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belancio VP, Roy-Engel AM, Pochampally RR, Deininger P (2010b) Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res 38(12):3909–3922. doi:10.1093/nar/gkq132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibillo A, Eickbush TH (2002) High processivity of the reverse transcriptase from a non-long terminal repeat retrotransposon. J Biol Chem 277(38):34836–34845

    Article  CAS  PubMed  Google Scholar 

  • Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431(7004):96–99

    Article  PubMed  CAS  Google Scholar 

  • Branco MR, Ficz G, Reik W (2012) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13(1):7–13. doi:10.1038/nrg3080

    CAS  Google Scholar 

  • Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 100(9):5280–5285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bundo M, Toyoshima M, Okada Y, Akamatsu W, Ueda J, Nemoto-Miyauchi T, Sunaga F, Toritsuka M, Ikawa D, Kakita A, Kato M, Kasai K, Kishimoto T, Nawa H, Okano H, Yoshikawa T, Kato T, Iwamoto K (2014) Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron 81(2):306–313. doi:10.1016/j.neuron.2013.10.053

    Article  CAS  PubMed  Google Scholar 

  • Burdette DL, Vance RE (2013) STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol 14(1):19–26. doi:10.1038/ni.2491

    Article  CAS  PubMed  Google Scholar 

  • Carreira PE, Richardson SR, Faulkner GJ (2014) L1 retrotransposons, cancer stem cells and oncogenesis. FEBS J 281(1):63–73. doi:10.1111/febs.12601

    Article  CAS  PubMed  Google Scholar 

  • Castro-Diaz N, Ecco G, Coluccio A, Kapopoulou A, Yazdanpanah B, Friedli M, Duc J, Jang SM, Turelli P, Trono D (2014) Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev 28(13):1397–1409. doi:10.1101/gad.241661.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Dahlstrom JE, Chandra A, Board P, Rangasamy D (2012) Prognostic value of LINE-1 retrotransposon expression and its subcellular localization in breast cancer. Breast Cancer Res Treat 136(1):129–142. doi:10.1007/s10549-012-2246-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho NY, Kim BH, Choi M, Yoo EJ, Moon KC, Cho YM, Kim D, Kang GH (2007) Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features. J Pathol 211(3):269–277. doi:10.1002/path.2106

    Article  CAS  PubMed  Google Scholar 

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10(10):691–703. doi:10.1038/nrg2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cost GJ, Boeke JD (1998) Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 37(51):18081–18093

    Article  CAS  PubMed  Google Scholar 

  • Cost GJ, Feng Q, Jacquier A, Boeke JD (2002) Human L1 element target-primed reverse transcription in vitro. Embo J 21(21):5899–5910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O’Shea KS, Moran JV, Gage FH (2009) L1 retrotransposition in human neural progenitor cells. Nature 460(7259):1127–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coufal NG, Garcia-Perez JL, Peng GE, Marchetto MC, Muotri AR, Mu Y, Carson CT, Macia A, Moran JV, Gage FH (2011) Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci U S A 108(51):20382–20387. doi:10.1073/pnas.1100273108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai L, Huang Q, Boeke JD (2011) Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem 12:18. doi:10.1186/1471-2091-12-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7(12):e1002384. doi:10.1371/journal.pgen.1002384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denli AM, Narvaiza I, Kerman BE, Pena M, Benner C, Marchetto MC, Diedrich JK, Aslanian A, Ma J, Moresco JJ, Moore L, Hunter T, Saghatelian A, Gage FH (2015) Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell 163(3):583–593. doi:10.1016/j.cell.2015.09.025

    Article  CAS  PubMed  Google Scholar 

  • Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Dmitriev SE, Andreev DE, Terenin IM, Olovnikov IA, Prassolov VS, Merrick WC, Shatsky IN (2007) Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5′ untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated. Mol Cell Biol 27(13):4685–4697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doucet TT, Kazazian HH Jr (2016) Long interspersed element sequencing (L1-Seq): a method to identify somatic LINE-1 insertions in the human genome. Methods Mol Biol 1400:79–93. doi:10.1007/978-1-4939-3372-3_5

    Article  PubMed  Google Scholar 

  • Doucet AJ, Hulme AE, Sahinovic E, Kulpa DA, Moldovan JB, Kopera HC, Athanikar JN, Hasnaoui M, Bucheton A, Moran JV, Gilbert N (2010) Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet 6(10). doi:10.1371/journal.pgen.1001150

  • Doucet AJ, Wilusz JE, Miyoshi T, Liu Y, Moran JV (2015) A 3′ Poly(A) tract is required for LINE-1 retrotransposition. Mol Cell 60(5):728–741. doi:10.1016/j.molcel.2015.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doucet-O’Hare TT, Rodic N, Sharma R, Darbari I, Abril G, Choi JA, Young Ahn J, Cheng Y, Anders RA, Burns KH, Meltzer SJ, Kazazian HH Jr (2015) LINE-1 expression and retrotransposition in Barrett’s esophagus and esophageal carcinoma. Proc Natl Acad Sci U S A 112(35):E4894–E4900. doi:10.1073/pnas.1502474112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eickbush TH (2002) Repair by retrotransposition. Nat Genet 31(2):126–127

    Article  CAS  PubMed  Google Scholar 

  • Ellsworth DL, Ellsworth RE, Liebman MN, Hooke JA, Shriver CD (2004) Genomic instability in histologically normal breast tissues: implications for carcinogenesis. Lancet Oncol 5(12):753–758. doi:10.1016/S1470-2045(04)01653-5

    Article  CAS  PubMed  Google Scholar 

  • Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC, Lehmann HS, Parker JJ, Atabay KD, Gilmore EC, Poduri A, Park PJ, Walsh CA (2012) Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151(3):483–496. doi:10.1016/j.cell.2012.09.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evrony GD, Lee E, Mehta BK, Benjamini Y, Johnson RM, Cai X, Yang L, Haseley P, Lehmann HS, Park PJ, Walsh CA (2015) Cell lineage analysis in human brain using endogenous retroelements. Neuron 85(1):49–59. doi:10.1016/j.neuron.2014.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evrony GD, Lee E, Park PJ, Walsh CA (2016) Resolving rates of mutation in the brain using single-neuron genomics. Elife 5. doi:10.7554/eLife.12966

  • Ewing AD, Kazazian HH Jr (2010) High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res 20(9):1262–1270. doi:10.1101/gr.106419.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewing AD, Gacita A, Wood LD, Ma F, Xing D, Kim MS, Manda SS, Abril G, Pereira G, Makohon-Moore A, Looijenga LH, Gillis AJ, Hruban RH, Anders RA, Romans KE, Pandey A, Iacobuzio-Donahue CA, Vogelstein B, Kinzler KW, Kazazian HH Jr, Solyom S (2015) Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution. Genome Res 25(10):1536–1545. doi:10.1101/gr.196238.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87(5):905–916

    Article  CAS  PubMed  Google Scholar 

  • Fowler BJ, Gelfand BD, Kim Y, Kerur N, Tarallo V, Hirano Y, Amarnath S, Fowler DH, Radwan M, Young MT, Pittman K, Kubes P, Agarwal HK, Parang K, Hinton DR, Bastos-Carvalho A, Li S, Yasuma T, Mizutani T, Yasuma R, Wright C, Ambati J (2014) Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity. Science 346(6212):1000–1003. doi:10.1126/science.1261754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedli M, Turelli P, Kapopoulou A, Rauwel B, Castro-Diaz N, Rowe HM, Ecco G, Unzu C, Planet E, Lombardo A, Mangeat B, Wildhaber BE, Naldini L, Trono D (2014) Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency. Genome Res 24(8):1251–1259. doi:10.1101/gr.172809.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furano AV (2000) The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. Prog Nucleic Acid Res Mol Biol 64:255–294

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Perez JL, Marchetto MC, Muotri AR, Coufal NG, Gage FH, O’Shea KS, Moran JV (2007) LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet 16(13):1569–1577. doi:10.1093/hmg/ddm105

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Perez JL, Morell M, Scheys JO, Kulpa DA, Morell S, Carter CC, Hammer GD, Collins KL, O’Shea KS, Menendez P, Moran JV (2010) Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466(7307):769–773. doi:10.1038/nature09209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasior SL, Wakeman TP, Xu B, Deininger PL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357(5):1383–1393. doi:10.1016/j.jmb.2006.01.089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert N, Lutz-Prigge S, Moran JV (2002) Genomic deletions created upon LINE-1 retrotransposition. Cell 110(3):315–325

    Article  CAS  PubMed  Google Scholar 

  • Goodier JL (2014) Retrotransposition in tumors and brains. Mob DNA 5(1):11. doi:10.1186/1759-8753-5-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodier JL, Kazazian HH (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135(1):23–35

    Article  CAS  PubMed  Google Scholar 

  • Goodier JL, Cheung LE, Kazazian HH Jr (2012) MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells. PLoS Genet 8(10):e1002941. doi:10.1371/journal.pgen.1002941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodier JL, Cheung LE, Kazazian HH Jr (2013) Mapping the LINE1 ORF1 protein interactome reveals associated inhibitors of human retrotransposition. Nucleic Acids Res 41(15):7401–7419. doi:10.1093/nar/gkt512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodier JL, Pereira GC, Cheung LE, Rose RJ, Kazazian HH Jr (2015) The broad-spectrum antiviral protein ZAP restricts human retrotransposition. PLoS Genet 11(5):e1005252. doi:10.1371/journal.pgen.1005252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336):63–67. doi:10.1038/nature09805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimaldi G, Singer MF (1983) Members of the KpnI family of long interspersed repeated sequences join and interrupt alpha-satellite in the monkey genome. Nucleic Acids Res 11(2):321–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Ma J, Sun J, Gao G (2007) The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci U S A 104(1):151–156. doi:10.1073/pnas.0607063104

    Article  CAS  PubMed  Google Scholar 

  • Han JS, Szak ST, Boeke JD (2004) Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429(6989):268–274

    Article  CAS  PubMed  Google Scholar 

  • Hancks DC, Kazazian HH Jr (2012) Active human retrotransposons: variation and disease. Curr Opin Genet Dev 22(3):191–203. doi:10.1016/j.gde.2012.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancks DC, Goodier JL, Mandal PK, Cheung LE, Kazazian HH (2011) Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet 20(17):3386–3400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris CR, Normart R, Yang Q, Stevenson E, Haffty BG, Ganesan S, Cordon-Cardo C, Levine AJ, Tang LH (2010) Association of nuclear localization of a long interspersed nuclear element-1 protein in breast tumors with poor prognostic outcomes. Genes Cancer 1(2):115–124. doi:10.1177/1947601909360812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazen JL, Faust GG, Rodriguez AR, Ferguson WC, Shumilina S, Clark RA, Boland MJ, Martin G, Chubukov P, Tsunemoto RK, Torkamani A, Kupriyanov S, Hall IM, Baldwin KK (2016) The complete genome sequences, unique mutational spectra, and developmental potency of adult neurons revealed by cloning. Neuron 89(6):1223–1236. doi:10.1016/j.neuron.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  • Heras SR, Macias S, Plass M, Fernandez N, Cano D, Eyras E, Garcia-Perez JL, Caceres JF (2013) The microprocessor controls the activity of mammalian retrotransposons. Nat Struct Mol Biol 20(10):1173–1181. doi:10.1038/nsmb.2658

    Article  CAS  PubMed  Google Scholar 

  • Heras SR, Macias S, Caceres JF, Garcia-Perez JL (2014) Control of mammalian retrotransposons by cellular RNA processing activities. Mob Genet Elements 4:e28439

    Article  PubMed  PubMed Central  Google Scholar 

  • Hohjoh H, Singer MF (1996) Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. Embo J 15(3):630–639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hohjoh H, Singer MF (1997a) Ribonuclease and high salt sensitivity of the ribonucleoprotein complex formed by the human LINE-1 retrotransposon. J Mol Biol 271(1):7–12

    Article  CAS  PubMed  Google Scholar 

  • Hohjoh H, Singer MF (1997b) Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. Embo J 16(19):6034–6043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CR, Schneider AM, Lu Y, Niranjan T, Shen P, Robinson MA, Steranka JP, Valle D, Civin CI, Wang T, Wheelan SJ, Ji H, Boeke JD, Burns KH (2010) Mobile interspersed repeats are major structural variants in the human genome. Cell 141(7):1171–1182. doi:10.1016/j.cell.2010.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter RG, Murakami G, Dewell S, Seligsohn M, Baker ME, Datson NA, McEwen BS, Pfaff DW (2012) Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc Natl Acad Sci U S A 109(43):17657–17662. doi:10.1073/pnas.1215810109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inamura K, Yamauchi M, Nishihara R, Lochhead P, Qian ZR, Kuchiba A, Kim SA, Mima K, Sukawa Y, Jung S, Zhang X, Wu K, Cho E, Chan AT, Meyerhardt JA, Harris CC, Fuchs CS, Ogino S (2014) Tumor LINE-1 methylation level and microsatellite instability in relation to colorectal cancer prognosis. J Natl Cancer Inst 106 (9). doi:10.1093/jnci/dju195

  • Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF, Van Meir EG, Vertino PM, Devine SE (2010) Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141(7):1253–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs FM, Greenberg D, Nguyen N, Haeussler M, Ewing AD, Katzman S, Paten B, Salama SR, Haussler D (2014) An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516:242–245. doi:10.1038/nature13760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RB, Garrison KE, Wong JC, Duan EH, Nixon DF, Ostrowski MA (2008) Nucleoside analogue reverse transcriptase inhibitors differentially inhibit human LINE-1 retrotransposition. PLoS One 3(2):e1547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A 94(5):1872–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaer K, Speek M (2013) Retroelements in human disease. Gene 518(2):231–241. doi:10.1016/j.gene.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  • Kano H, Godoy I, Courtney C, Vetter MR, Gerton GL, Ostertag EM, Kazazian HH Jr (2009) L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev 23(11):1303–1312. doi:10.1101/gad.1803909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karayiorgou M, Simon TJ, Gogos JA (2010) 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 11(6):402–416. doi:10.1038/nrn2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazazian HH Jr (1999) An estimated frequency of endogenous insertional mutations in humans. Nat Genet 22(2):130

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332(6160):164–166. doi:10.1038/332164a0

    Article  CAS  PubMed  Google Scholar 

  • Khazina E, Weichenrieder O (2009) Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame. Proc Natl Acad Sci U S A 106(3):731–736. doi:10.1073/pnas.0809964106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klawitter S, Fuchs NV, Upton KR, Munoz-Lopez M, Shukla R, Wang J, Garcia-Canadas M, Lopez-Ruiz C, Gerhardt DJ, Sebe A, Grabundzija I, Merkert S, Gerdes P, Pulgarin JA, Bock A, Held U, Witthuhn A, Haase A, Sarkadi B, Lower J, Wolvetang EJ, Martin U, Ivics Z, Izsvak Z, Garcia-Perez JL, Faulkner GJ, Schumann GG (2016) Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat Commun 7:10286. doi:10.1038/ncomms10286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo S, Seleme Mdel C, Soifer HS, Perez JL, Moran JV, Kazazian HH Jr, Kasahara N (2006) L1 retrotransposition in nondividing and primary human somatic cells. Proc Natl Acad Sci U S A 103(21):8036–8041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulpa DA, Moran JV (2005) Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. Hum Mol Genet 14(21):3237–3248. doi:10.1093/hmg/ddi354

    Article  CAS  PubMed  Google Scholar 

  • Kulpa DA, Moran JV (2006) Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat Struct Mol Biol 13(7):655–660. doi:10.1038/nsmb1107

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara T, Hsieh J, Muotri A, Yeo G, Warashina M, Lie DC, Moore L, Nakashima K, Asashima M, Gage FH (2009) Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 12(9):1097–1105. doi:10.1038/nn.2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. doi:10.1038/35057062

    Article  CAS  PubMed  Google Scholar 

  • Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ 3rd, Lohr JG, Harris CC, Ding L, Wilson RK, Wheeler DA, Gibbs RA, Kucherlapati R, Lee C, Kharchenko PV, Park PJ (2012) Landscape of somatic retrotransposition in human cancers. Science 337(6097):967–971. doi:10.1126/science.1222077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin HL, Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 12(9):615–627. doi:10.1038/nrg3030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Jin Y, Prazak L, Hammell M, Dubnau J (2012) Transposable elements in TDP-43-mediated neurodegenerative disorders. PLoS One 7(9):e44099. doi:10.1371/journal.pone.0044099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Prazak L, Chatterjee N, Gruninger S, Krug L, Theodorou D, Dubnau J (2013) Activation of transposable elements during aging and neuronal decline in Drosophila. Nat Neurosci 16(5):529–531. doi:10.1038/nn.3368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Lee MH, Henderson L, Tyagi R, Bachani M, Steiner J, Campanac E, Hoffman DA, von Geldern G, Johnson K, Maric D, Morris HD, Lentz M, Pak K, Mammen A, Ostrow L, Rothstein J, Nath A (2015) Human endogenous retrovirus-K contributes to motor neuron disease. Sci Transl Med 7(307):307ra153. doi:10.1126/scitranslmed.aac8201

    Article  PubMed  Google Scholar 

  • Lin C, Yang L, Tanasa B, Hutt K, Ju BG, Ohgi K, Zhang J, Rose DW, Fu XD, Glass CK, Rosenfeld MG (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139(6):1069–1083. doi:10.1016/j.cell.2009.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72(4):595–605

    Article  CAS  PubMed  Google Scholar 

  • Macia A, Munoz-Lopez M, Cortes JL, Hastings RK, Morell S, Lucena-Aguilar G, Marchal JA, Badge RM, Garcia-Perez JL (2011) Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol Cell Biol 31(2):300–316. doi:10.1128/MCB.00561-10

    Article  CAS  PubMed  Google Scholar 

  • Mager DL, Stoye JP (2015) Mammalian endogenous retroviruses. Microbiol Spectr 3(1):MDNA3-0009-2014. doi:10.1128/microbiolspec.MDNA3-0009-2014

  • Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143(4):527–539. doi:10.1016/j.cell.2010.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetto MC, Narvaiza I, Denli AM, Benner C, Lazzarini TA, Nathanson JL, Paquola AC, Desai KN, Herai RH, Weitzman MD, Yeo GW, Muotri AR, Gage FH (2013) Differential L1 regulation in pluripotent stem cells of humans and apes. Nature 503(7477):525–529. doi:10.1038/nature12686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin SL (1991) Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol Cell Biol 11(9):4804–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin SL, Bushman FD (2001) Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol Cell Biol 21(2):467–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254(5039):1808–1810

    Article  CAS  PubMed  Google Scholar 

  • Matlik K, Redik K, Speek M (2006) L1 antisense promoter drives tissue-specific transcription of human genes. J Biomed Biotechnol 2006(1):71753. doi:10.1155/JBB/2006/71753

    PubMed  PubMed Central  Google Scholar 

  • Maze I, Covington HE 3rd, Dietz DM, LaPlant Q, Renthal W, Russo SJ, Mechanic M, Mouzon E, Neve RL, Haggarty SJ, Ren Y, Sampath SC, Hurd YL, Greengard P, Tarakhovsky A, Schaefer A, Nestler EJ (2010) Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327(5962):213–216. doi:10.1126/science.1179438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J, Kinzler KW, Vogelstein B, Nakamura Y (1992) Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res 52(3):643–645

    CAS  PubMed  Google Scholar 

  • Mills RE, Bennett EA, Iskow RC, Devine SE (2007) Which transposable elements are active in the human genome? Trends Genet 23(4):183–191

    Article  CAS  PubMed  Google Scholar 

  • Mine M, Chen JM, Brivet M, Desguerre I, Marchant D, de Lonlay P, Bernard A, Ferec C, Abitbol M, Ricquier D, Marsac C (2007) A large genomic deletion in the PDHX gene caused by the retrotranspositional insertion of a full-length LINE-1 element. Hum Mutat 28(2):137–142

    Article  CAS  PubMed  Google Scholar 

  • Moldovan JB, Moran JV (2015) The zinc-finger antiviral protein ZAP inhibits LINE and Alu retrotransposition. PLoS Genet 11(5):e1005121. doi:10.1371/journal.pgen.1005121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monot C, Kuciak M, Viollet S, Mir AA, Gabus C, Darlix JL, Cristofari G (2013) The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts. PLoS Genet 9(5):e1003499. doi:10.1371/journal.pgen.1003499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran JV, Gilbert N (2002) Mammalian LINE-1 retrotransposons and related elements. In: Craig N, Craggie R, Gellert M, Lambowitz A (eds) Mobile DNA II. ASM Press, Washington, DC

    Google Scholar 

  • Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87(5):917–927

    Article  CAS  PubMed  Google Scholar 

  • Moran JV, DeBerardinis RJ, Kazazian HH Jr (1999) Exon shuffling by L1 retrotransposition. Science 283(5407):1530–1534

    Article  CAS  PubMed  Google Scholar 

  • Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE, Batzer MA, Moran JV (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31(2):159–165. doi:10.1038/ng898

    Article  CAS  PubMed  Google Scholar 

  • Morrish TA, Garcia-Perez JL, Stamato TD, Taccioli GE, Sekiguchi J, Moran JV (2007) Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres. Nature 446(7132):208–212. doi:10.1038/nature05560

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Lopez M, Garcia-Perez JL (2010) DNA transposons: nature and applications in genomics. Curr Genomics 11(2):115–128. doi:10.2174/138920210790886871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Lopez M, Macia A, Garcia-Canadas M, Badge RM, Garcia-Perez JL (2011) An epi [c] genetic battle: LINE-1 retrotransposons and intragenomic conflict in humans. Mob Genet Elements 1(2):122–127. doi:10.4161/mge.1.2.16730

    Article  PubMed  PubMed Central  Google Scholar 

  • Munoz-Lopez M, Garcia-Canadas M, Macia A, Morell S, Garcia-Perez JL (2012) Analysis of LINE-1 expression in human pluripotent cells. Methods Mol Biol 873:113–125. doi:10.1007/978-1-61779-794-1_7

    Article  CAS  PubMed  Google Scholar 

  • Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435(7044):903–910

    Article  CAS  PubMed  Google Scholar 

  • Muotri AR, Zhao C, Marchetto MC, Gage FH (2009) Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19(10):1002–1007. doi:10.1002/hipo.20564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K, Gage FH (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468(7322):443–446. doi:10.1038/nature09544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nigumann P, Redik K, Matlik K, Speek M (2002) Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79(5):628–634. doi:10.1006/geno.2002.6758

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284(5757):604–607

    Article  CAS  PubMed  Google Scholar 

  • Ostertag EM, Kazazian HH Jr (2001) Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res 11(12):2059–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson MN, Scannapieco AE, Au PH, Dorsey S, Royer CA, Maxwell PH (2015) Preferential retrotransposition in aging yeast mother cells is correlated with increased genome instability. DNA Repair 34:18–27. doi:10.1016/j.dnarep.2015.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrat PN, DasGupta S, Wang J, Theurkauf W, Weng Z, Rosbash M, Waddell S (2013) Transposition-driven genomic heterogeneity in the Drosophila brain. Science 340(6128):91–95. doi:10.1126/science.1231965

    Article  CAS  PubMed  Google Scholar 

  • Philippe C, Vargas-Landin DB, Doucet AJ, van Essen D, Vera-Otarola J, Kuciak M, Corbin A, Nigumann P, Cristofari G (2016) Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci. Elife 5:e13926. doi:10.7554/eLife.13926

  • Pokatayev V, Hasin N, Chon H, Cerritelli SM, Sakhuja K, Ward JM, Morris HD, Yan N, Crouch RJ (2016) RNase H2 catalytic core Aicardi-Goutieres syndrome-related mutant invokes cGAS-STING innate immune-sensing pathway in mice. J Exp Med 213:329–336. doi:10.1084/jem.20151464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raiz J, Damert A, Chira S, Held U, Klawitter S, Hamdorf M, Lower J, Stratling WH, Lower R, Schumann GG (2011) The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res 40(4):1666–1683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ray DA, Feschotte C, Pagan HJ, Smith JD, Pritham EJ, Arensburger P, Atkinson PW, Craig NL (2008) Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. Genome Res 18(5):717–728. doi:10.1101/gr.071886.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhee YY, Lee TH, Song YS, Wen X, Kim H, Jheon S, Lee CT, Kim J, Cho NY, Chung JH, Kang GH (2015) Prognostic significance of promoter CpG island hypermethylation and repetitive DNA hypomethylation in stage I lung adenocarcinoma. Virchows Arch 466(6):675–683. doi:10.1007/s00428-015-1749-0

    Article  CAS  PubMed  Google Scholar 

  • Richardson SR, Morell S, Faulkner GJ (2014a) L1 retrotransposons and somatic mosaicism in the brain. Annu Rev Genet 48:1–27. doi:10.1146/annurev-genet-120213-092412

    Article  CAS  PubMed  Google Scholar 

  • Richardson SR, Narvaiza I, Planegger RA, Weitzman MD, Moran JV (2014b) APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition. Elife 3:e02008

    PubMed  PubMed Central  Google Scholar 

  • Richardson SR, Doucet AJ, Kopera HC, Moldovan JB, Garcia-Perez JL, Moran JV (2015) The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol Spectr 3(2):MDNA3-0061-2014. doi:10.1128/microbiolspec.MDNA3-0061-2014

  • Rodic N, Sharma R, Sharma R, Zampella J, Dai L, Taylor MS, Hruban RH, Iacobuzio-Donahue CA, Maitra A, Torbenson MS, Goggins M, Shih Ie M, Duffield AS, Montgomery EA, Gabrielson E, Netto GJ, Lotan TL, De Marzo AM, Westra W, Binder ZA, Orr BA, Gallia GL, Eberhart CG, Boeke JD, Harris CR, Burns KH (2014) Long interspersed element-1 protein expression is a hallmark of many human cancers. Am J Pathol 184(5):1280–1286. doi:10.1016/j.ajpath.2014.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusiecki JA, Chen L, Srikantan V, Zhang L, Yan L, Polin ML, Baccarelli A (2012) DNA methylation in repetitive elements and post-traumatic stress disorder: a case-control study of US military service members. Epigenomics 4(1):29–40. doi:10.2217/epi.11.116

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Luque FJ, Richardson SR, Faulkner GJ (2016) Retrotransposon capture sequencing (RC-Seq): a targeted, high-throughput approach to resolve somatic L1 retrotransposition in humans. Methods Mol Biol 1400:47–77. doi:10.1007/978-1-4939-3372-3_4

    Article  PubMed  Google Scholar 

  • Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HH Jr (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Schumann GG (2007) APOBEC3 proteins: major players in intracellular defence against LINE-1-mediated retrotransposition. Biochem Soc Trans 35(Pt 3):637–642. doi:10.1042/BST0350637

    Article  CAS  PubMed  Google Scholar 

  • Scott AF, Schmeckpeper BJ, Abdelrazik M, Comey CT, O’Hara B, Rossiter JP, Cooley T, Heath P, Smith KD, Margolet L (1987) Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1(2):113–125

    Article  CAS  PubMed  Google Scholar 

  • Scott EC, Gardner EJ, Masood A, Chuang NT, Vertino PM, Devine SE (2016) A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res 26(6):745–755. doi:10.1101/gr.201814.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Chow J, Wang Z, Fan G (2006) Abnormal CpG island methylation occurs during in vitro differentiation of human embryonic stem cells. Hum Mol Genet 15(17):2623–2635. doi:10.1093/hmg/ddl188

    Article  CAS  PubMed  Google Scholar 

  • Speek M (2001) Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 21(6):1973–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stetson DB, Medzhitov R (2006) Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24(1):93–103. doi:10.1016/j.immuni.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  • Stetson DB, Ko JS, Heidmann T, Medzhitov R (2008) Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134(4):587–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suter CM, Martin DI, Ward RL (2004) Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int J Colorectal Dis 19(2):95–101. doi:10.1007/s00384-003-0539-3

    Article  PubMed  Google Scholar 

  • Swergold GD (1990) Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol 10(12):6718–6729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symer DE, Connelly C, Szak ST, Caputo EM, Cost GJ, Parmigiani G, Boeke JD (2002) Human l1 retrotransposition is associated with genetic instability in vivo. Cell 110(3):327–338

    Article  CAS  PubMed  Google Scholar 

  • Taylor MS, Lacava J, Mita P, Molloy KR, Huang CR, Li D, Adney EM, Jiang H, Burns KH, Chait BT, Rout MP, Boeke JD, Dai L (2013) Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition. Cell 155(5):1034–1048. doi:10.1016/j.cell.2013.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telesnitsky A, Goff SP (1997) Reverse transcriptase and the generation of retroviral DNA. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor, New York

    Google Scholar 

  • Tellier M, Bouuaert CC, Chalmers R (2015) Mariner and the ITm superfamily of transposons. Microbiol Spectr 3(2):MDNA3-0033-2014. doi:10.1128/microbiolspec.MDNA3-0033-2014

  • Thayer RE, Singer MF, Fanning TG (1993) Undermethylation of specific LINE-1 sequences in human cells producing a LINE-1-encoded protein. Gene 133(2):273–277

    Article  CAS  PubMed  Google Scholar 

  • Thomas CA, Paquola AC, Muotri AR (2012) LINE-1 retrotransposition in the nervous system. Annu Rev Cell Dev Biol 28:555–573. doi:10.1146/annurev-cellbio-101011-155822

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Trivedi M, Shah J, Hodgson N, Byun HM, Deth R (2014) Morphine induces redox-based changes in global DNA methylation and retrotransposon transcription by inhibition of excitatory amino acid transporter type 3-mediated cysteine uptake. Mol Pharmacol 85(5):747–757. doi:10.1124/mol.114.091728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upton KR, Gerhardt DJ, Jesuadian JS, Richardson SR, Sanchez-Luque FJ, Bodea GO, Ewing AD, Salvador-Palomeque C, van der Knaap MS, Brennan PM, Vanderver A, Faulkner GJ (2015) Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161(2):228–239. doi:10.1016/j.cell.2015.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Hurk JA, Meij IC, Seleme MC, Kano H, Nikopoulos K, Hoefsloot LH, Sistermans EA, de Wijs IJ, Mukhopadhyay A, Plomp AS, de Jong PT, Kazazian HH, Cremers FP (2007) L1 retrotransposition can occur early in human embryonic development. Hum Mol Genet 16(13):1587–1592. doi:10.1093/hmg/ddm108

    Article  PubMed  CAS  Google Scholar 

  • Van Meter M, Kashyap M, Rezazadeh S, Geneva AJ, Morello TD, Seluanov A, Gorbunova V (2014) SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat Commun 5:5011. doi:10.1038/ncomms6011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volkman HE, Stetson DB (2014) The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 15(5):415–422. doi:10.1038/ni.2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voskresenskiy AM, Sun LS (2008) The housekeeping gene (GA3PDH) and the long interspersed nuclear element (LINE) in the blood and organs of rats treated with cocaine. Ann N Y Acad Sci 1137:309–315. doi:10.1196/annals.1448.045

    Article  CAS  PubMed  Google Scholar 

  • Wallace NA, Belancio VP, Deininger PL (2008) L1 mobile element expression causes multiple types of toxicity. Gene 419(1–2):75–81. doi:10.1016/j.gene.2008.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM, Kazazian HH, Boeke JD, Moran JV (2001) Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol 21(4):1429–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheelan SJ, Aizawa Y, Han JS, Boeke JD (2005) Gene-breaking: a new paradigm for human retrotransposon-mediated gene evolution. Genome Res 15(8):1073–1078. doi:10.1101/gr.3688905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wissing S, Montano M, Garcia-Perez JL, Moran JV, Greene WC (2011) Endogenous APOBEC3B restricts LINE-1 retrotransposition in transformed cells and human embryonic stem cells. J Biol Chem 286(42):36427–36437. doi:10.1074/jbc.M111.251058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wissing S, Munoz-Lopez M, Macia A, Yang Z, Montano M, Collins W, Garcia-Perez JL, Moran JV, Greene WC (2012) Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility. Hum Mol Genet 21(1):208–218. doi:10.1093/hmg/ddr455

    Article  PubMed  CAS  Google Scholar 

  • Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, Duggan R, Wang Y, Barber GN, Fitzgerald KA, Alegre ML, Gajewski TF (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41(5):830–842. doi:10.1016/j.immuni.2014.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing J, Zhang Y, Han K, Salem AH, Sen SK, Huff CD, Zhou Q, Kirkness EF, Levy S, Batzer MA, Jorde LB (2009) Mobile elements create structural variation: analysis of a complete human genome. Genome Res 19(9):1516–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Dong B, Doucet AJ, Moldovan JB, Moran JV, Silverman RH (2014) RNase L restricts the mobility of engineered retrotransposons in cultured human cells. Nucleic Acids Res 42(6):3803–3820. doi:10.1093/nar/gkt1308

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Du J, Han X, Goodier JL, Li P, Zhou X, Wei W, Evans SL, Li L, Zhang W, Cheung LE, Wang G, Kazazian HH Jr, Yu XF (2013) Modulation of LINE-1 and Alu/SVA retrotransposition by Aicardi-Goutieres syndrome-related SAMHD1. Cell Rep 4(6):1108–1115. doi:10.1016/j.celrep.2013.08.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.L.G.P’s lab is supported by CICE-FEDER-P12-CTS-2256, Plan Nacional de I+D+I 2008–2011 and 2013–2016 (FIS-FEDER-PI11/01489 and FIS-FEDER-PI14/02152), PCIN-2014-115-ERA-NET NEURON II, the European Research Council (ERC-Consolidator ERC-STG-2012-233764), by an International Early Career Scientist grant from the Howard Hughes Medical Institute (IECS-55007420) and by The Wellcome Trust-University of Edinburgh Institutional Strategic Support Fund (ISFF2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angela Macia or Jose L. Garcia-Perez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Macia, A., Tejwani, L., Mesci, P., Muotri, A., Garcia-Perez, J.L. (2017). Activity of Retrotransposons in Stem Cells and Differentiated Cells. In: Cristofari, G. (eds) Human Retrotransposons in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-48344-3_6

Download citation

Publish with us

Policies and ethics