Skip to main content

Neuronal Genome Plasticity: Retrotransposons, Environment and Disease

  • Chapter
  • First Online:
Human Retrotransposons in Health and Disease

Abstract

The neuronal genome has long been considered as a stably persisting entity interpreted as the foundation of neurobiology. Over the past decade, it has become increasingly clear that mobile genetic elements, such as the retrotransposon LINE-1 (L1), are actively transcribed and transpose in the healthy brain. L1 activity therefore provides a route to somatic genome diversity and dynamism in neuronal populations. Here, we discuss the discovery of L1 retrotransposition during neurogenesis, and consider how neuronal cells regulate retrotransposition in response to endogenous and environmental stimuli. We also bring forward hypotheses relating to how L1 impacts normal brain development and function, as well as how abnormal L1 mobilisation could contribute to neurological disease susceptibility and pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akindipe T, Wilson D, Stein DJ (2014) Psychiatric disorders in individuals with methamphetamine dependence: prevalence and risk factors. Metab Brain Dis 29(2):351–357

    Article  CAS  PubMed  Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Arlington

    Book  Google Scholar 

  • Amir RE et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23(2):185–188

    Article  CAS  PubMed  Google Scholar 

  • Athanikar JN, Badge RM, Moran JV (2004) A YY1-binding site is required for accurate human LINE-1 transcription initiation. Nucleic Acids Res 32(13):3846–3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagot RC et al (2014) Epigenetic signaling in psychiatric disorders: stress and depression. Dialogues Clin Neurosci 16(3):281–295

    PubMed  PubMed Central  Google Scholar 

  • Baillie JK et al (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479(7374):534–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck CR et al (2010) LINE-1 retrotransposition activity in human genomes. Cell 141(7):1159–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck CR et al (2011) LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 12:187–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker CM (1990) Disorders of the inhibitory glycine receptor: the spastic mouse. FASEB J 4(10):2767–2774

    CAS  PubMed  Google Scholar 

  • Becker KG et al (1993) Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. Hum Mol Genet 2(10):1697–1702

    Article  CAS  PubMed  Google Scholar 

  • Bejerano G et al (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441(7089):87–90

    Article  CAS  PubMed  Google Scholar 

  • Belancio VP et al (2010) Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res 38(12):3909–3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger A et al (2014) Direct binding of the Alu binding protein dimer SRP9/14 to 40S ribosomal subunits promotes stress granule formation and is regulated by Alu RNA. Nucleic Acids Res 42(17):11203–11217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergsland M et al (2006) The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev 20(24):3475–3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böhne A et al (2008) Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res 16(1):203–215

    Article  PubMed  CAS  Google Scholar 

  • Bollati V et al (2011) DNA methylation in repetitive elements and Alzheimer disease. Brain Behav Immun 25(6):1078–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourque G (2009) Transposable elements in gene regulation and in the evolution of vertebrate genomes. Curr Opin Genet Dev 19(6):607–612

    Article  CAS  PubMed  Google Scholar 

  • Brouha B et al (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 100(9):5280–5285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AS (2011) The environment and susceptibility to schizophrenia. Prog Neurobiol 93(1):23–58

    Article  CAS  PubMed  Google Scholar 

  • Bundo M et al (2014) Increased L1 retrotransposition in the neuronal genome in schizophrenia. Neuron 81(2):306–313

    Article  CAS  PubMed  Google Scholar 

  • Casacuberta E, González J (2013) The impact of transposable elements in environmental adaptation. Mol Ecol 22(6):1503–1517

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Rattner A, Nathans J (2006) Effects of L1 retrotransposon insertion on transcript processing, localization and accumulation: lessons from the retinal degeneration 7 mouse and implications for the genomic ecology of L1 elements. Hum Mol Genet 15(13):2146–2156

    Article  CAS  PubMed  Google Scholar 

  • Coufal NG et al (2009) L1 retrotransposition in human neural progenitor cells. Nature 460(7259):1127–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coufal NG et al (2011) Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci U S A 108(51):20382–20387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Arcangelo G et al (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374(6524):719–723

    Article  PubMed  Google Scholar 

  • de Bergeyck V et al (1997) A truncated Reelin protein is produced but not secreted in the “Orleans” reeler mutation (Relnrl-Orl). Mol Brain Res 50(1–2):85–90

    Article  PubMed  Google Scholar 

  • Denli AM et al (2015) Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell 163(3):583–593

    Article  CAS  PubMed  Google Scholar 

  • Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Doucet AJ et al (2015) A 3′ Poly(A) tract is required for LINE-1 retrotransposition. Mol Cell 60(5):728–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sawy M et al (2005) Nickel stimulates L1 retrotransposition by a post-transcriptional mechanism. J Mol Biol 354(2):246–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson PS et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Evrony GD et al (2012) Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151(3):483–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewing AD, Kazazian HH (2011) Whole-genome resequencing allows detection of many rare LINE-1 insertion alleles in humans. Genome Res 21(6):985–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farkash EA et al (2006) Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay. Nucleic Acids Res 34(4):1196–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farzan F et al (2010) Evidence for gamma inhibition deficits in the dorsolateral prefrontal cortex of patients with schizophrenia. Brain 133(Pt 5):1505–1514

    Article  PubMed  Google Scholar 

  • Faulkner GJ et al (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41(5):563–571

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9(5):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fort A et al (2014) Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat Genet 46(6):558–566

    Article  CAS  PubMed  Google Scholar 

  • Fuks F et al (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278(6):4035–4040

    Article  CAS  PubMed  Google Scholar 

  • Gabel HW et al (2015) Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature 522(7554):89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Perez JL et al (2007a) Distinct mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase. Genome Res 17(5):602–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Perez JL et al (2007b) LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet 16(13):1569–1577

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Perez JL et al (2010) Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466(7307):769–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gifford WD, Pfaff SL, Macfarlan TS (2013) Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol 23(5):218–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgi G, Marcantonio P, Del Re B (2011) LINE-1 retrotransposition in human neuroblastoma cells is affected by oxidative stress. Cell Tissue Res 346(3):383–391

    Article  CAS  PubMed  Google Scholar 

  • Graham V et al (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39(5):749–765

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi G, Skowronski J, Singer M (1984) Defining the beginning and end of KpnI family segments. EMBO J 3(8):1753–1759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guillozet-Bongaarts AL et al (2014) Altered gene expression in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 19(4):478–485

    Article  CAS  PubMed  Google Scholar 

  • Guy J et al (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315(5815):1143–1147

    Article  CAS  PubMed  Google Scholar 

  • Habibi L et al (2014) Mercury specifically induces LINE-1 activity in a human neuroblastoma cell line. Mutat Res 759:9–20

    Article  CAS  Google Scholar 

  • Han JS, Boeke JD (2004) A highly active synthetic mammalian retrotransposon. Nature 429(6989):314–318

    Article  CAS  PubMed  Google Scholar 

  • Han JS, Szak ST, Boeke JD (2004) Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429(6989):268–274

    Article  CAS  PubMed  Google Scholar 

  • Haoudi A et al (2004) Retrotransposition-competent human LINE-1 induces apoptosis in cancer cells with intact p53. J Biomed Biotechnol 2004(4):185–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris CR et al (2009) p53 responsive elements in human retrotransposons. Oncogene 28(44):3857–3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslinger A et al (2009) Expression of Sox11 in adult neurogenic niches suggests a stage-specific role in adult neurogenesis. Eur J Neurosci 29(11):2103–2114

    Article  PubMed  Google Scholar 

  • Hata K, Sakaki Y (1997) Identification of critical CpG sites for repression of L1 transcription by DNA methylation. Gene 189(2):227–234

    Article  CAS  PubMed  Google Scholar 

  • He Y, Casaccia-Bonnefil P (2008) The Yin and Yang of YY1 in the nervous system. J Neurochem 106(4):1493–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrich C et al (2014) Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Reports 3(6):1000–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchins AP, Pei D (2015) Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs. Sci Bull (Beijing) 60(20):1722–1733

    Article  CAS  Google Scholar 

  • Inoue K, Shiga T, Ito Y (2008) Runx transcription factors in neuronal development. Neural Dev 3(1):20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iskow RC et al (2010) Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141(7):1253–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen LK, Southwick SM, Kosten TR (2001) Substance use disorders in patients with posttraumatic stress disorder: a review of the literature. Am J Psychiatry 158(8):1184–1190

    Article  CAS  PubMed  Google Scholar 

  • Jacques P-É, Jeyakani J, Bourque G (2013) The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet 9(5):e1003504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson R, Guigo R (2014) The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 20(7):959–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan IK et al (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19(2):68–72

    Article  CAS  PubMed  Google Scholar 

  • Joshi D, Fullerton JM, Weickert CS (2014) Elevated ErbB4 mRNA is related to interneuron deficit in prefrontal cortex in schizophrenia. J Psychiatr Res 53:125–132

    Article  PubMed  Google Scholar 

  • Kale SP et al (2005) Heavy metals stimulate human LINE-1 retrotransposition. Int J Environ Res Public Health 2(1):14–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kale SP et al (2006) The L1 retrotranspositional stimulation by particulate and soluble cadmium exposure is independent of the generation of DNA breaks. Int J Environ Res Public Health 3(2):121–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kano H et al (2009) L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev 23(11):1303–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazazian HH et al (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332(6160):164–166

    Article  CAS  PubMed  Google Scholar 

  • Kelley DR et al (2014) Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions. Genome Biol 15(12):537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim S et al (2015) Memory, scene construction, and the human hippocampus. Proc Natl Acad Sci U S A 112(15):4767–4772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimoto S, Bazmi HH, Lewis DA (2014) Lower expression of glutamic acid decarboxylase 67 in the prefrontal cortex in schizophrenia: contribution of altered regulation by Zif268. Am J Psychiatry 171(9):969–978

    Article  PubMed  PubMed Central  Google Scholar 

  • Kingsmore SF et al (1994) Glycine receptor beta-subunit gene mutation in spastic mouse associated with LINE-1 element insertion. Nat Genet 7(2):136–141

    Article  CAS  PubMed  Google Scholar 

  • Klawitter S et al (2016) Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat Commun 7:10286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koehl M (2015) Gene-environment interaction in programming hippocampal plasticity: focus on adult neurogenesis. Front Mol Neurosci 8:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurnosov AA et al (2015) The evidence for increased L1 activity in the site of human adult brain neurogenesis. PLoS One 10(2):e0117854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuwabara T et al (2009) Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 12(9):1097–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwapis JL, Wood MA (2014) Epigenetic mechanisms in fear conditioning: implications for treating post-traumatic stress disorder. Trends Neurosci 37(12):706–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lallemend F et al (2012) Positional differences of axon growth rates between sensory neurons encoded by Runx3. EMBO J 31(18):3718–3729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander E et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  PubMed  Google Scholar 

  • Lennartsson A et al (2015) Remodeling of retrotransposon elements during epigenetic induction of adult visual cortical plasticity by HDAC inhibitors. Epigenetics Chromatin 8(1):55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li T-H, Schmid CW (2001) Differential stress induction of individual Alu loci: implications for transcription and retrotransposition. Gene 276(1–2):135–141

    Article  CAS  PubMed  Google Scholar 

  • Li W et al (2012) Transposable elements in TDP-43-mediated neurodegenerative disorders. PLoS One 7(9):e44099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W et al (2013) Activation of transposable elements during aging and neuronal decline in Drosophila. Nat Neurosci 16(5):529–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maze I et al (2011) Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proc Natl Acad Sci U S A 108(7):3035–3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A 36(6):344–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226(4676):792–801

    Article  CAS  PubMed  Google Scholar 

  • McDonald RJ, Hong NS (2013) How does a specific learning and memory system in the mammalian brain gain control of behavior? Hippocampus 23(11):1084–1102

    Article  PubMed  Google Scholar 

  • Miki Y et al (1992) Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res 52(3):643–645

    CAS  PubMed  Google Scholar 

  • Mir AA, Philippe C, Cristofari G (2015) euL1db: the European database of L1HS retrotransposon insertions in humans. Nucleic Acids Res 43(Database issue):D43–D47

    Article  PubMed  Google Scholar 

  • Modabbernia A, Arora M, Reichenberg A (2016) Environmental exposure to metals, neurodevelopment, and psychosis. Curr Opin Pediatr 28(2):243–249

    Article  CAS  PubMed  Google Scholar 

  • Moran JV et al (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87(5):917–927

    Article  CAS  PubMed  Google Scholar 

  • Morrish TA et al (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31(2):159–165

    Article  CAS  PubMed  Google Scholar 

  • Mu L et al (2012) SoxC transcription factors Are required for neuronal differentiation in adult hippocampal neurogenesis. J Neurosci 32(9):3067–3080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mülhardt C et al (1994) The spastic mouse: aberrant splicing of glycine receptor beta subunit mRNA caused by intronic insertion of L1 element. Neuron 13(4):1003–1015

    Article  PubMed  Google Scholar 

  • Muotri AR et al (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435(7044):903–910

    Article  CAS  PubMed  Google Scholar 

  • Muotri AR et al (2009) Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19(10):1002–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muotri AR et al (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468(7322):443–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nan X et al (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389

    Article  CAS  PubMed  Google Scholar 

  • Okudaira N, Ishizaka Y, Nishio H (2014) Retrotransposition of long interspersed element 1 induced by methamphetamine or cocaine. J Biol Chem 289(37):25476–25485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver KR, Greene WK (2011) Mobile DNA and the TE-Thrust hypothesis: supporting evidence from the primates. Mob DNA 2(1):8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostertag EM (2000) Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res 28(6):1418–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey R et al (2011) Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism. Genome Biol 12(11):R117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peaston AE et al (2004) Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 7(4):597–606

    Article  CAS  PubMed  Google Scholar 

  • Reilly MT et al (2013) The role of transposable elements in health and diseases of the central nervous system. J Neurosci 33(45):17577–17586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson SR, Morell S, Faulkner GJ (2014) L1 retrotransposons and somatic mosaicism in the brain. Annu Rev Genet 48:1–27

    Article  CAS  PubMed  Google Scholar 

  • Ring KL et al (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11(1):100–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusiecki JA et al (2012) DNA methylation in repetitive elements and post-traumatic stress disorder: a case-control study of US military service members. Epigenomics 4(1):29–40

    Article  CAS  PubMed  Google Scholar 

  • Rylski M et al (2008) Yin Yang 1 expression in the adult rodent brain. Neurochem Res 33(12):2556–2564

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T et al (2008) Possible involvement of SINEs in mammalian-specific brain formation. Proc Natl Acad Sci U S A 105(11):4220–4225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sassaman DM et al (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Scott AF et al (1987) Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1(2):113–125

    Article  CAS  PubMed  Google Scholar 

  • Segman RH et al (2005) Peripheral blood mononuclear cell gene expression profiles identify emergent post-traumatic stress disorder among trauma survivors. Mol Psychiatry 10(5):500–513, 425

    Article  CAS  PubMed  Google Scholar 

  • Shahbazian MD (2002) Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 11(2):115–124

    Article  CAS  PubMed  Google Scholar 

  • Shiloh Y (2001) ATM (ataxia telangiectasia mutated): expanding roles in the DNA damage response and cellular homeostasis. Biochem Soc Trans 29(6):661–666

    Article  CAS  PubMed  Google Scholar 

  • Shukla R et al (2013) Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 153(1):101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer MF et al (1993) LINE-1: a human transposable element. Gene 135(1–2):183–188

    Article  CAS  PubMed  Google Scholar 

  • Singer T et al (2010) LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci 33(8):345–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spadafora C (2015) A LINE-1-encoded reverse transcriptase-dependent regulatory mechanism is active in embryogenesis and tumorigenesis. Ann N Y Acad Sci 1341:164–171

    Article  CAS  PubMed  Google Scholar 

  • Stribinskis V, Ramos KS (2006) Activation of human long interspersed nuclear element 1 retrotransposition by benzo(a)pyrene, an ubiquitous environmental carcinogen. Cancer Res 66(5):2616–2620

    Article  CAS  PubMed  Google Scholar 

  • Symer DE et al (2002) Human L1 retrotransposition is associated with genetic instability in vivo. Cell 110:327–338

    Article  CAS  PubMed  Google Scholar 

  • Takahara T et al (1996) Dysfunction of the Orleans reeler gene arising from exon skipping due to transposition of a full-length copy of an active L1 sequence into the skipped exon. Hum Mol Genet 5(7):989–993

    Article  CAS  PubMed  Google Scholar 

  • Taylor AMR et al (2015) Ataxia telangiectasia: more variation at clinical and cellular levels. Clin Genet 87(3):199–208

    Article  CAS  PubMed  Google Scholar 

  • Tchénio T, Casella JF, Heidmann T (2000) Members of the SRY family regulate the human LINE retrotransposons. Nucleic Acids Res 28(2):411–415

    Article  PubMed  PubMed Central  Google Scholar 

  • Tedeschi A, Di Giovanni S (2009) The non-apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon. EMBO Rep 10(6):576–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng SC, Kim B, Gabriel A (1996) Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383(6601):641–644

    Article  PubMed  Google Scholar 

  • Tipps ME, Raybuck JD, Lattal KM (2014) Substance abuse, memory, and post-traumatic stress disorder. Neurobiol Learn Mem 112:87–100

    Article  PubMed  Google Scholar 

  • Trelogan SA, Martin SL (1995) Tightly regulated, developmentally specific expression of the first open reading frame from LINE-1 during mouse embryogenesis. Proc Natl Acad Sci 92(5):1520–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyekucheva S et al (2011) Establishing the baseline level of repetitive element expression in the human cortex. BMC Genomics 12:495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upton KR et al (2015) Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161(2):228–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Meter M et al (2014) SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat Commun 5:5011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallace NA, Belancio VP, Deininger PL (2008) L1 mobile element expression causes multiple types of toxicity. Gene 419(1–2):75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W et al (2001) Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol 21(4):1429–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weïwer M et al (2013) Therapeutic potential of isoform selective HDAC inhibitors for the treatment of schizophrenia. Future Med Chem 5(13):1491–1508

    Article  PubMed  CAS  Google Scholar 

  • Wright AV, Nuñez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164(1–2):29–44

    Article  CAS  PubMed  Google Scholar 

  • Wylie A et al (2015) p53 genes function to restrain mobile elements. Genes Dev 30(1):64–77

    Article  PubMed  CAS  Google Scholar 

  • Yang N et al (2003) An important role for RUNX3 in human L1 transcription and retrotransposition. Nucleic Acids Res 31(16):4929–4940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F et al (2001) Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. Nucleic Acids Res 29(21):4493–4501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhornitsky S et al (2015) Psychopathology in substance use disorder patients with and without substance-induced psychosis. J Addict 2015:843762

    PubMed  PubMed Central  Google Scholar 

  • Zovkic IB, Sweatt JD (2013) Epigenetic mechanisms in learned fear: implications for PTSD. Neuropsychopharmacology 38(1):77–93

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey J. Faulkner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kempen, MJ.H.C., Bodea, G.O., Faulkner, G.J. (2017). Neuronal Genome Plasticity: Retrotransposons, Environment and Disease. In: Cristofari, G. (eds) Human Retrotransposons in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-48344-3_5

Download citation

Publish with us

Policies and ethics