Skip to main content

Retrotransposon Contribution to Genomic Plasticity

  • Chapter
  • First Online:
Book cover Human Retrotransposons in Health and Disease

Abstract

Genomic instability is strongly linked to the development and malignancy of cancer, and by studying premalignant conditions we can gain a better understanding of the sources of genomic instability and improve cancer prevention and treatment. The genome is very unstable in both premalignant and malignant conditions; however, it is unknown as to what extent different types of instability contribute. Retrotransposition is an active source of genomic instability in the human genome and has the potential to change DNA structure and RNA expression. Retrotransposons are repetitive sequences that can “copy and paste” into the genome at new sites within an individual cell, and hundreds are known to be active in the human genome. Despite the enormous influence of retrotransposons on the genome composition of many organisms, the degree to which they contribute to somatic genomic instability is unknown. In order to review the current evidence supporting the activity of retrotransposons in the human genome and their contribution to various diseases we will introduce results from many studies in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C et al (1997) Clustering of mutations responsible for branchio-oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1. Hum Mol Genet 6(13):2247–2255

    Article  CAS  PubMed  Google Scholar 

  • Akman HO, Davidzon G, Tanji K, Macdermott EJ, Larsen L, Davidson MM et al (2010) Neutral lipid storage disease with subclinical myopathy due to a retrotransposal insertion in the PNPLA2 gene. Neuromuscul Disord 20(6):397–402

    Article  PubMed  Google Scholar 

  • Al-Qubaisi MS, Rasedee A, Flaifel MH, Ahmad SHJ, Hussein-Al-Ali S, Hussein MZ et al (2013) Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin. Int J Nanomedicine 8:2497–2508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anagnou NP, Economou-Pachnis A, O’Brien SJ, Modi WS, Nienhuis AW, Tsichlis PN (1989) The human homolog of the Moloney leukemia virus integration 2 locus (MLV12) maps to band p14 of chromosome 5. Genomics 5(2):354–358

    Article  CAS  PubMed  Google Scholar 

  • Apoil PA, Kuhlein E, Robert A, Rubie H, Blancher A (2007) HIGM syndrome caused by insertion of an AluYb8 element in exon 1 of the CD40LG gene. Immunogenetics 59(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N et al (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442(7099):203–207

    CAS  PubMed  Google Scholar 

  • Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KF et al (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31(6):785–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arca M, Zuliani G, Wilund KR, Campagna F, Fellin R, Bertolini S et al (2002) Autosomal recessive hypercholesterolaemia in Sardinia, Italy, and mutations in ARH: a clinical and molecular genetic analysis. Lancet 359(9309):841–847

    Article  CAS  PubMed  Google Scholar 

  • Arjan-Odedra S, Swanson CM, Sherer NM, Wolinsky SM, Malim MH (2012) Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses. Retrovirology 9:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awano H, Malueka RG, Yagi M, Okizuka Y, Takeshima Y, Matsuo M (2010) Contemporary retrotransposition of a novel non-coding gene induces exon-skipping in dystrophin mRNA. J Hum Genet 55(12):785–790

    Article  CAS  PubMed  Google Scholar 

  • Baba Y, Huttenhower C, Nosho K, Tanaka N, Shima K, Hazra A et al (2010) Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol Cancer 9:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Badge RM, Alisch RS, Moran JV (2003) ATLAS: a system to selectively identify human-specific L1 insertions. Am J Hum Genet 72(4):823–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bailey JA, Liu G, Eichler EE (2003) An Alu transposition model for the origin and expansion of human segmental duplications. Am J Hum Genet 73(4):823–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F et al (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479:534–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3(5):370–379

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp NJ, Makris M, Preston FE, Peake IR, Daly ME (2000) Major structural defects in the antithrombin gene in four families with type I antithrombin deficiency—partial/complete deletions and rearrangement of the antithrombin gene. Thromb Haemost 83(5):715–721

    CAS  PubMed  Google Scholar 

  • Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE et al (2010) LINE-1 retrotransposition activity in human genomes. Cell 141(7):1159–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck CR, Garcia-Perez JL, Badge RM, Moran JV (2011) LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 12:187–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belancio VP, Hedges DJ, Deininger P (2008) Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res 18(3):343–358

    Article  CAS  PubMed  Google Scholar 

  • Bennett EA, Keller H, Mills RE, Schmidt S, Moran JV, Weichenrieder O et al (2008) Active Alu retrotransposons in the human genome. Genome Res 18(12):1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard V, Minnerop M, Bürk K, Kreuz F, Gillessen-Kaesbach G, Zühlke C (2009) Exon deletions and intragenic insertions are not rare in ataxia with oculomotor apraxia 2. BMC Med Genet 10:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beveridge R, Pintos J, Parent M, Asselin J, Siemiatycki J (2010) Lung cancer risk associated with occupational exposure to nickel, chromium VI, and cadmium in two population-based case—control studies in Montreal. Am J Ind Med 485(53):476–485

    Google Scholar 

  • Bochukova EG, Roscioli T, Hedges DJ, Taylor IB, Johnson D, David DJ et al (2009) Rare mutations of FGFR2 causing apert syndrome: identification of the first partial gene deletion, and an Alu element insertion from a new subfamily. Hum Mutat 30(2):204–211

    Article  CAS  PubMed  Google Scholar 

  • Boffetta P, Nyberg F (2003) Contribution of environmental factors to cancer risk. Br Med Bull 68:71–94

    Article  CAS  PubMed  Google Scholar 

  • Bogerd HP, Wiegand HL, Hulme AE, Garcia-Perez JL, O’Shea KS, Moran JV et al (2006a) Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc Natl Acad Sci U S A 103(23):8780–8785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogerd HP, Wiegand HL, Doehle BP, Lueders KK, Cullen BR (2006b) APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucleic Acids Res 34(1):89–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boissinot S, Chevret P, Furano AV (2000) L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol Biol Evol 17(6):915–928

    Article  CAS  PubMed  Google Scholar 

  • Boissinot S, Entezam A, Young L, Munson PJ, Furano AV (2004) The insertional history of an active family of L1 retrotransposons in humans. Genome Res 14(7):1221–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchet C, Vuillaumier-Barrot S, Gonzales M, Boukari S, Le Bizec C, Fallet C et al (2007) Detection of an Alu insertion in the POMT1 gene from three French Walker Warburg syndrome families. Mol Genet Metab 90(1):93–96

    Article  CAS  PubMed  Google Scholar 

  • Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431(7004):96–99

    Article  PubMed  CAS  Google Scholar 

  • Brouha B, Meischl C, Ostertag E, de Boer M, Zhang Y, Neijens H et al (2002) Evidence consistent with human L1 retrotransposition in maternal meiosis I. Am J Hum Genet 71(2):327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV et al (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 100(9):5280–5285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burwinkel B, Kilimann MW (1998) Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease. J Mol Biol 277(3):513–517

    Article  CAS  PubMed  Google Scholar 

  • Cabot EL, Angeletti B, Usdin K, Furano AV (1997) Rapid evolution of a young L1 (LINE-1) clade in recently speciated Rattus taxa. J Mol Evol 45(4):412–423

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Evrony GD, Lehmann HS, Elhosary PC, Mehta BK, Poduri A et al (2014) Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep 8(5):1280–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callinan PA, Wang J, Herke SW, Garber RK, Liang P, Batzer MA (2005) Alu retrotransposition-mediated deletion. J Mol Biol 348(4):791–800

    Article  CAS  PubMed  Google Scholar 

  • Callinan A, Batzer MA, Callinan PA (2006) Retrotransposable elements and human disease. Genome Dynam 1:104–115

    Article  CAS  Google Scholar 

  • Carreira PE, Richardson SR, Faulkner GJ (2014) L1 retrotransposons, cancer stem cells and oncogenesis. FEBS J 281(1):63–73

    Article  CAS  PubMed  Google Scholar 

  • Casavant NC, Hardies SC (1994) The dynamics of murine LINE-1 subfamily amplification. J Mol Biol 241(3):390–397

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Lilley CE, Yu Q, Lee DV, Chou J, Narvaiza I et al (2006) APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr Biol 16(5):480–485

    Article  CAS  PubMed  Google Scholar 

  • Chen J-M, Masson E, Macek M, Raguénès O, Piskackova T, Fercot B et al (2008) Detection of two Alu insertions in the CFTR gene. J Cyst Fibros 7(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Cheung VG, Cheung VG, Spielman RS, Spielman RS, Ewens KG, Ewens KG et al (2005) Mapping determinants of human gene expression by regional and genome-wide association. Nature 437(7063):1365–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N, Glass JL et al (2010) LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141(6):956–969

    Article  CAS  PubMed  Google Scholar 

  • Claverie-Martin F, González-Acosta H, Flores C, Antón-Gamero M, García-Nieto V (2003) De novo insertion of an Alu sequence in the coding region of the CLCN5 gene results in Dent’s disease. Hum Genet 113(6):480–485

    Article  CAS  PubMed  Google Scholar 

  • Conley ME, Partain JD, Norland SM, Shurtleff SA, Kazazian HH (2005) Two independent retrotransposon insertions at the same site within the coding region of BTK. Hum Mutat 25(3):324–325

    Article  PubMed  Google Scholar 

  • Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT et al (2009) L1 retrotransposition in human neural progenitor cells. Nature 460(7259):1127–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M et al (2008) An endogenous small interfering RNA pathway in Drosophila. Nature 453(7196):798–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Boer M, van Leeuwen K, Geissler J, Weemaes CM, van den Berg TK, Kuijpers TW et al (2014) Primary immunodeficiency caused by an exonized retroposed gene copy inserted in the CYBB gene. Hum Mutat 35(4):486–496

    Article  PubMed  CAS  Google Scholar 

  • den Hollander AI, ten Brink JB, de Kok YJ, van Soest S, van den Born LI, van Driel MA et al (1999) Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nat Genet 23(2):217–221

    Article  CAS  Google Scholar 

  • Denissenko MF, Pao A, Tang M, Pfeifer GP (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in p53. Science 274(5286):430–432

    Article  CAS  PubMed  Google Scholar 

  • Doucet-O’Hare TT, Rodić N, Sharma R, Darbari I, Abril G, Choi JA et al (2015) LINE-1 expression and retrotransposition in Barrett’s esophagus and esophageal carcinoma. Proc Natl Acad Sci U S A 112(35):201502474

    Google Scholar 

  • Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC, Lehmann HS et al (2012) Single-neuron sequencing analysis of l1 retrotransposition and somatic mutation in the human brain. Cell 151(3):483–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewing AD, Kazazian HH (2010) High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res 20(9):1262–1270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ewing AD, Gacita A, Wood LD, Ma F, Xing D, Manda SS et al (2015) Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution. Genome Res 25(10):1536–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faulkner GJ (2011) Retrotransposons: mobile and mutagenic from conception to death. FEBS Lett 585(11):1589–1594

    Article  CAS  PubMed  Google Scholar 

  • Feng Q, Moran JV, Kazazian HH, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87(5):905–916

    Article  CAS  PubMed  Google Scholar 

  • Flynn EK, Kamat A, Lach FP, Donovan FX, Kimble DC, Narisu N et al (2014) Comprehensive analysis of pathogenic deletion variants in fanconi anemia genes. Hum Mutat 35(11):1342–1353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fornace AJ, Mitchell JB (1986) Induction of B2 RNA polymerase III transcription by heat shock: enrichment for heat shock induced sequences in rodent cells by hybridization subtraction. Nucleic Acids Res 14(14):5793–5811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallus GN, Cardaioli E, Rufa A, Da Pozzo P, Bianchi S, D’Eramo C et al (2010) Alu-element insertion in an OPA1 intron sequence associated with autosomal dominant optic atrophy. Mol Vis 16:178–183

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ganguly A, Dunbar T, Chen P, Godmilow L, Ganguly T (2003) Exon skipping caused by an intronic insertion of a young Alu Yb9 element leads to severe hemophilia A. Hum Genet 113(4):348–352

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Perez JL, Marchetto MCN, Muotri AR, Coufal NG, Gage FH, O’Shea KS et al (2007) LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet 16(13):1569–1577

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Perez JL, Morell M, Scheys JO, Kulpa DA, Morell S, Carter CC et al (2010) Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466(7307):769–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgi G, Marcantonio P, Del Re B (2011) LINE-1 retrotransposition in human neuroblastoma cells is affected by oxidative stress. Cell Tissue Res 346(3):383–391

    Article  CAS  PubMed  Google Scholar 

  • Goodier JL, Kazazian HH (2008) Retrotransposons revisited. The restraint and rehabilitation of parasites. Cell 135(1):23–35

    Article  CAS  PubMed  Google Scholar 

  • Goodier JL, Ostertag EM, Kazazian HH (2000) Transduction of 3′-flanking sequences is common in L1 retrotransposition. Hum Mol Genet 9(4):653–657

    Article  CAS  PubMed  Google Scholar 

  • Goodier JL, Ostertag EM, Du K, Kazazian HH Jr (2001) A novel active L1 retrotransposon subfamily in the mouse. Genome Res 11(10):1677–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodier JL, Cheung LE, Kazazian HH (2012) MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells. PLoS Genet 8(10):e1002941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodier JL, Cheung LE, Kazazian HH (2013) Mapping the LINE1 ORF1 protein interactome reveals associated inhibitors of human retrotransposition. Nucleic Acids Res 41(15):7401–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham T, Boissinot S (2006) The genomic distribution of L1 elements: the role of insertion bias and natural selection. J Biomed Biotechnol 2006(1):75327

    PubMed  PubMed Central  Google Scholar 

  • Green PM, Bagnall RD, Waseem NH, Giannelli F (2008) Haemophilia A mutations in the UK: results of screening one-third of the population. Br J Haematol 143(1):115–128

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi G, Skowronski J, Singer MF (1984) Defining the beginning and end of KpnI family segments. EMBO J 3(8):1753–1759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Y, Kodama H, Watanabe S, Kikuchi N, Ishitsuka I, Ozawa H et al (2007) The first reported case of Menkes disease caused by an Alu insertion mutation. Brain Dev 29(2):105–108

    Article  PubMed  Google Scholar 

  • Halling KC, Lazzaro CR, Honchel R, Bufill JA, Powell SM, Arndt CA et al (1999) Hereditary desmoid disease in a family with a germline Alu I repeat mutation of the APC gene. Hum Hered 49(2):97–102

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The Hallmarks of Cancer Review evolve progressively from normalcy via a series of pre. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hancks DC, Kazazian HH (2012) Active human retrotransposons: variation and disease. Curr Opin Genet Dev 22(3):191–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hastings PJ, Ira G, Lupski JR (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5(1):e1000327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedges DJ, Deininger PL (2007) Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res 616(1–2):46–59

    Article  CAS  PubMed  Google Scholar 

  • Helman E, Lawrence MS, Stewart C, Sougnez C, Getz G, Meyerson M (2014) Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing. Genome Res 24(7):1053–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heras SR, Macias S, Plass M, Fernandez N, Cano D, Eyras E et al (2013) The microprocessor controls the activity of mammalian retrotransposons. Nat Struct Mol Biol 20(10):1173–1181

    Article  CAS  PubMed  Google Scholar 

  • Hill AS, Foot NJ, Chaplin TL, Young BD (2000) The most frequent constitutional translocation in humans, the t(11;22)(q23;q11) is due to a highly specific alu-mediated recombination. Hum Mol Genet 9(10):1525–1532

    Article  CAS  PubMed  Google Scholar 

  • Holmes SE, Dombroski BA, Krebs CM, Boehm CD, Kazazian HH (1994) A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nat Genet 7(2):143–148

    Article  CAS  PubMed  Google Scholar 

  • Hormozdiari F, Konkel MK, Prado-Martinez J, Chiatante G, Herraez IH, Walker JA et al (2013) Rates and patterns of great ape retrotransposition. Proc Natl Acad Sci U S A 110(33):13457–13462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CRL, Schneider AM, Lu Y, Niranjan T, Shen P, Robinson MA et al (2010) Mobile interspersed repeats are major structural variants in the human genome. Cell 141(7):1171–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF et al (2010) Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141(7):1253–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z, Rodriguez-Santiago B et al (2012) Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44(6):651–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janicic N, Pausova Z, Cole DE, Hendy GN (1995) Insertion of an Alu sequence in the Ca(2+)-sensing receptor gene in familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Am J Hum Genet 56(4):880–886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaer K, Speek M (2013) Retroelements in human disease. Gene 518(2):231–241

    Article  CAS  PubMed  Google Scholar 

  • Kagawa T, Oka A, Kobayashi Y, Hiasa Y, Kitamura T, Sakugawa H et al (2015) Recessive inheritance of population-specific intronic LINE-1 insertion causes a rotor syndrome phenotype. Hum Mutat 36(3):327–332

    Article  CAS  PubMed  Google Scholar 

  • Kale SP, Moore L, Deininger PL, Roy-Engel AM (2005) Heavy metals stimulate human LINE-1 retrotransposition. Int J Environ Res Public Health 2(1):14–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kano H, Godoy I, Courtney C, Vetter MR, Gerton GL, Ostertag EM et al (2009) L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev 23(11):1303–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M, Kohara Y et al (2007) Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 16(19):2272–2280

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303(5664):1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332(6160):164–166

    Article  CAS  PubMed  Google Scholar 

  • Khan H, Smit A, Boissinot S (2006) Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res 16(1):78–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB et al (1991a) Identification of FAP locus genes from chromosome 5q21. Science 253(5020):661–665

    Article  CAS  PubMed  Google Scholar 

  • Kinzler KW, Nilbert MC, Vogelstein B, Bryan TM, Levy DB, Smith KJ et al (1991b) Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science 251(4999):1366–1370

    Article  CAS  PubMed  Google Scholar 

  • Kloor M, Sutter C, Wentzensen N, Cremer FW, Buckowitz A, Keller M et al (2004) A large MSH2 Alu insertion mutation causes HNPCC in a German kindred. Hum Genet [Internet] 115(5):432–438

    Article  CAS  Google Scholar 

  • Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E, Nomura Y et al (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394(6691):388–392

    Article  CAS  PubMed  Google Scholar 

  • Kondo-Iida E, Kobayashi K, Watanabe M, Sasaki J, Kumagai T, Koide H et al (1999) Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum Mol Genet 8(12):2303–2309

    Article  CAS  PubMed  Google Scholar 

  • Kutsche K, Ressler B, Katzera HG, Orth U, Gillessen-Kaesbach G, Morlot S et al (2002) Characterization of breakpoint sequences of five rearrangements in L1CAM and ABCD1 (ALD) genes. Hum Mutat 19(5):526–535

    Article  CAS  PubMed  Google Scholar 

  • Lander E, Linton L, Birren B, Nusbaum C, Zody M, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  PubMed  Google Scholar 

  • Lanikova L, Kucerova J, Indrak K, Divoka M, Issa J-P, Papayannopoulou T et al (2013) β-Thalassemia due to intronic LINE-1 insertion in the β-globin gene (HBB): molecular mechanisms underlying reduced transcript levels of the β-globin(L1) allele. Hum Mutat 34(10):1361–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP et al (2012) Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet Internet 44(6):642–650

    Article  CAS  Google Scholar 

  • Lee J, Ha J, Son SY, Han K (2012a) Human genomic deletions generated by SVA-associated events. Comp Funct Genomics 2012:807270

    PubMed  PubMed Central  Google Scholar 

  • Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ et al (2012b) Landscape of somatic retrotransposition in human cancers. Science 337(6097):967–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ et al (2012c) Analysis of somatic retrotransposition in human cancers. BMC Proc 6:O23

    Article  PubMed Central  Google Scholar 

  • Levin HL, Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 12(9):615–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Scaringe WA, Hill KA, Roberts S, Mengos A, Careri D et al (2001) Frequency of recent retrotransposition events in the human factor IX gene. Hum Mutat 17(6):511–519

    Article  CAS  PubMed  Google Scholar 

  • Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer-analyses of Cohorts of Twins from Sweden, Denmark, and Finland. N Engl J Med 343(2):78–85

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhang X, Huang F, Yang B, Li J, Liu B et al (2012) APOBEC3G inhibits microRNA-mediated repression of translation by interfering with the interaction between Argonaute-2 and MOV10. J Biol Chem 287(35):29373–29383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz SM, Vincent BJ, Kazazian HH, Batzer MA, Moran JV (2003) Allelic heterogeneity in LINE-1 retrotransposition activity. Am J Hum Genet 73(6):1431–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macias S, Plass M, Stajuda A, Michlewski G, Eyras E, Cáceres JF (2012) DGCR8 HITS-CLIP reveals novel functions for the microprocessor. Nat Struct Mol Biol 19(8):760–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makino S, Kaji R, Ando S, Tomizawa M, Yasuno K, Goto S et al (2007) Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am J Hum Genet 80(3):393–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136(4):656–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manco L, Relvas L, Pinto C (2006) Molecular characterization of five Portuguese patients with pyrimidine 5’-nucleotidase deficient hemolytic anemia showing three new P5'NI mutations. Haematologica 91(2):2–3

    Google Scholar 

  • Masson E, Hammel P, Garceau C, Bénech C, Quéméner-Redon S, Chen J-M et al (2013) Characterization of two deletions of the CTRC locus. Mol Genet Metab 109(3):296–300

    Article  CAS  PubMed  Google Scholar 

  • Maxwell PH, Burhans WC, Curcio MJ (2011) Retrotransposition is associated with genome instability during chronological aging. Proc Natl Acad Sci U S A 108(51):20376–20381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meili D, Kralovicova J, Zagalak J, Bonafe L, Fiori L, Blau N et al (2009) Disease-causing mutations improving the branch site and polypyrimidine tract: Pseudoexon activation of LINE-2 and antisense alu lacking the poly(T)-Tail. Hum Mutat 30(5):823–831

    Article  CAS  PubMed  Google Scholar 

  • Meischl C, Boer M, Ahlin A, Roos D (2000) A new exon created by intronic insertion of a rearranged LINE-1 element as the cause of chronic granulomatous disease. Eur J Hum Genet 8(9):697–703

    Article  CAS  PubMed  Google Scholar 

  • Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J, Kinzler KW et al (1992) Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res 52(3):643–645

    CAS  PubMed  Google Scholar 

  • Miki Y, Katagiri T, Kasumi F, Yoshimoto T, Nakamura Y (1996) Mutation analysis in the BRCA2 gene in primary breast cancers. Nat Genet 13(2):245–247

    Article  CAS  PubMed  Google Scholar 

  • Mills RE, Bennett EA, Iskow RC, Devine SE (2007) Which transposable elements are active in the human genome? Trends Genet 23(4):183–191

    Article  CAS  PubMed  Google Scholar 

  • Miné M, Chen J-M, Brivet M, Desguerre I, Marchant D, de Lonlay P et al (2007) A large genomic deletion in the PDHX gene caused by the retrotranspositional insertion of a full-length LINE-1 element. Hum Mutat 28(2):137–142

    Article  PubMed  CAS  Google Scholar 

  • Mir AA, Philippe C, Cristofari G (2015) euL1db: the European database of L1HS retrotransposition insertions in humans. Nucleic Acids Res 43(Database issue):D43–D47

    Article  PubMed  Google Scholar 

  • Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87(5):917–927

    Article  CAS  PubMed  Google Scholar 

  • Moran JV, DeBerardinis RJ, Kazazian HH (1999) Exon shuffling by L1 retrotransposition. Science 283(5407):1530–1534

    Article  CAS  PubMed  Google Scholar 

  • Morisada N, Rendtorff ND, Nozu K, Morishita T, Miyakawa T, Matsumoto T et al (2010) Branchio-oto-renal syndrome caused by partial EYA1 deletion due to LINE-1 insertion. Pediatr Nephrol 25(7):1343–1348

    Article  PubMed  Google Scholar 

  • Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE et al (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31(2):159–165

    Article  CAS  PubMed  Google Scholar 

  • Muckenfuss H, Hamdorf M, Held U, Perkovic M, Löwer J, Cichutek K et al (2006) APOBEC3 proteins inhibit human LINE-1 retrotransposition. J Biol Chem 281(31):22161–22172

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Mukhopadhyay A, Banerjee D, Chandak GR, Ray K (2004) Molecular pathology of haemophilia B: identification of five novel mutations including a LINE 1 insertion in Indian patients. Haemophilia 10(3):259–263

    Article  CAS  PubMed  Google Scholar 

  • Muotri AR, Chu VT, Marchetto MCN, Deng W, Moran JV, Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435(7044):903–910

    Article  CAS  PubMed  Google Scholar 

  • Muotri AR, Marchetto MCN, Coufal NG, Oefner R, Yeo G, Nakashima K et al (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468(7322):443–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muratani K, Hada T, Yamamoto Y, Kaneko T, Shigeto Y, Ohue T et al (1991) Inactivation of the cholinesterase gene by Alu insertion: possible mechanism for human gene transposition. Proc Natl Acad Sci U S A 88(24):11315–11319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musova Z, Hedvicakova P, Mohrmann M, Tesarova M, Krepelova A, Zeman J et al (2006) A novel insertion of a rearranged L1 element in exon 44 of the dystrophin gene: further evidence for possible bias in retroposon integration. Biochem Biophys Res Commun 347(1):145–149

    Article  CAS  PubMed  Google Scholar 

  • Mustajoki S, Ahola H, Mustajoki P, Kauppinen R (1999) Insertion of Alu element responsible for acute intermittent porphyria. Hum Mutat 13(6):431–438

    Article  CAS  PubMed  Google Scholar 

  • Myers JS, Vincent BJ, Udall H, Watkins WS, Morrish TA, Kilroy GE et al (2002) A comprehensive analysis of recently integrated human Ta L1 elements. Am J Hum Genet 71(2):312–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Murata M, Takagi Y, Kozuka T, Nakata Y, Hasebe R et al (2015) SVA retrotransposition in exon 6 of the coagulation factor IX gene causing severe hemophilia B. Int J Hematol 102(1):134–139

    Article  CAS  PubMed  Google Scholar 

  • Narita N, Nishio H, Kitoh Y, Ishikawa Y, Ishikawa Y, Minami R et al (1993) Insertion of a 5′ truncated L1 element into the 3′ end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J Clin Invest 91(5):1862–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldridge M, Zackai EH, McDonald-McGinn DM, Iseki S, Morriss-Kay GM, Twigg SR et al (1999) De novo alu-element insertions in FGFR2 identify a distinct pathological basis for Apert syndrome. Am J Hum Genet 64(2):446–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostertag EM, Prak ET, DeBerardinis RJ, Moran JV, Kazazian HH (2000) Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res 28(6):1418–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovchinnikov I, Troxel AB, Swergold GD (2001) Genomic characterization of recent human LINE-1 insertions: evidence supporting random insertion. Genome Res 11(12):2050–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AL, Weaver JMJ, Eldridge MD, Tavaré S, Fitzgerald RC, Edwards P, OCCAMs Consortium (2015) Mobile element insertions are frequent in oesophageal adenocarcinomas and can mislead paired-end sequencing analysis. BMC Genomics 16(1):473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peixoto A, Pinheiro M, Massena L, Santos C, Pinto P, Rocha P et al (2013) Genomic characterization of two large Alu-mediated rearrangements of the BRCA1 gene. J Hum Genet 58(2):78–83

    Article  CAS  PubMed  Google Scholar 

  • Perng W, Mora-Plazas M, Marín C, Rozek LS, Baylin A, Villamor E (2013) A prospective study of LINE-1DNA methylation and development of adiposity in school-age children. PLoS One 8(4):1–7

    Article  CAS  Google Scholar 

  • Pickeral OK, Makałowski W, Boguski MS, Boeke JD (2000) Frequent human genomic DNA transduction driven by line-1 retrotransposition. Genome Res 10(4):411–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pizarro JG, Cristofari G (2016) Post-transcriptional control of LINE-1 retrotransposition by cellular host factors in somatic cells. Front Cell Dev Biol 4:14. doi:10.3389/fcell.2016.00014

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian Y, Mancini-DiNardo D, Judkins T, Cox HC, Daniels C, Holladay J, Ryder M, Coffee B, Bowles KR, Roa BB (2015) Identification of retrotransposons insertion mutations in hereditary cancer. Myriad Genetics, Inc., Salt Lake City, UT

    Google Scholar 

  • Raiz J, Damert A, Chira S, Held U, Klawitter S, Hamdorf M et al (2012) The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res 40(4):1666–1683

    Article  CAS  PubMed  Google Scholar 

  • Rathore K, Wang HCR (2013) Mesenchymal and stem-like cell properties targeted in suppression of chronically-induced breast cell carcinogenesis. Cancer Lett 333(1):113–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray DA, Batzer MA (2011) Reading TE leaves: new approaches to the identification of transposable element insertions. Genome Res 21(6):813–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodić N, Sharma R, Sharma R, Zampella J, Dai L, Taylor MS et al (2014) Long interspersed element-1 protein expression is a hallmark of many human cancers. Am J Pathol 184(5):1280–1286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodić N, Steranka JP, Makohon-Moore A, Moyer A, Shen P, Sharma R et al (2015) Retrotransposon insertions in the clonal evolution of pancreatic ductal adenocarcinoma. Nat Med 21(9):1060–1064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schollen E, Keldermans L, Foulquier F, Briones P, Chabas A, Sánchez-Valverde F et al (2007) Characterization of two unusual truncating PMM2 mutations in two CDG-Ia patients. Mol Genet Metab 90(4):408–413

    Article  CAS  PubMed  Google Scholar 

  • Segal Y, Peissel B, Renieri A, de Marchi M, Ballabio A, Pei Y et al (1999) LINE-1 elements at the sites of molecular rearrangements in Alport syndrome-diffuse leiomyomatosis. Am J Hum Genet 64(1):62–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seleme M d C, Vetter MR, Cordaux R, Bastone L, Batzer MA, Kazazian HH (2006) Extensive individual variation in L1 retrotransposition capability contributes to human genetic diversity. Proc Natl Acad Sci U S A 103(17):6611–6616

    Article  CAS  PubMed  Google Scholar 

  • Sheen F, Sherry ST, Risch GM, Robichaux M, Nasidze I, Stoneking M et al (2000) Reading between the LINEs: human genomic variation induced by LINE-1 retrotransposition. Genome Res 10(10):1496–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla R, Upton KR, Muñoz-Lopez M, Gerhardt DJ, Fisher ME, Nguyen T et al (2013) Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 153(1):101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sijen T, Plasterk RHA (2003) Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426(6964):310–314

    Article  CAS  PubMed  Google Scholar 

  • Skowronski J, Fanning TG, Singer MF (1988) Unit-length line-1 transcripts in human teratocarcinoma cells. Mol Cell Biol 8(4):1385–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slotkin RK, Vaughn M, Borges F, Tanurdzić M, Becker JD, Feijó JA et al (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136(3):461–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smit AF, Tóth G, Riggs AD, Jurka J (1995) Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J Mol Biol 246(3):401–417

    Article  CAS  PubMed  Google Scholar 

  • Sobrier M-L, Netchine I, Heinrichs C, Thibaud N, Vié-Luton M-P, Van Vliet G et al (2005) Alu-element insertion in the homeodomain of HESX1 and aplasia of the anterior pituitary. Hum Mutat 25(5):503

    Article  PubMed  Google Scholar 

  • Solyom S, Ewing AD, Hancks DC, Takeshima Y, Awano H, Matsuo M et al (2012a) Pathogenic orphan transduction created by a nonreference LINE-1 retrotransposon. Hum Mutat 33(2):369–371

    Article  CAS  PubMed  Google Scholar 

  • Solyom S, Ewing AD, Rahrmann EP, Doucet T, Nelson HH, Burns MB et al (2012b) Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res 22(12):2328–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorenson TIA, Nielsen GG, Andersen PKTT (1988) Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 318(12):727–732

    Article  Google Scholar 

  • Stenglein MD, Harris RS (2006) APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism. J Biol Chem 281(25):16837–16841

    Article  CAS  PubMed  Google Scholar 

  • Stetson DB, Ko JS, Heidmann T, Medzhitov R (2008) Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134(4):587–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart C, Jural D, Stromberg MP, Walker JA, Konkel ML, Stutz AM, Urban AE, Grubert F, Lam HY, Lee WP, Busby M, Indap AR, Garrison E, Huff C, Xing J, Snyder MP, Jorde LB, Batzer MA, Korbel JO, Marth GT, 1000 Genoms Project (2011) A comprehensive map of mobile element insertion polymorphisms in humans. PLoS Genet 7(8):e1002236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoppa-Lyonnet D, Carter PE, Meo T, Tosi M (1990) Clusters of intragenic Alu repeats predispose the human C1 inhibitor locus to deleterious rearrangements. Proc Natl Acad Sci U S A 87(4):1551–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stribinskis V, Ramos KS (2006) Activation of human long interspersed nuclear element 1 retrotransposition by benzo(a)pyrene, an ubiquitous environmental carcinogen. Cancer Res 66(5):2616–2620

    Article  CAS  PubMed  Google Scholar 

  • Su LK, Steinbach G, Sawyer JC, Hindi M, Ward PA, Lynch PM (2000) Genomic rearrangements of the APC tumor-suppressor gene in familial adenomatous polyposis. Hum Genet 106(1):101–107

    Article  CAS  PubMed  Google Scholar 

  • Sukarova E, Dimovski AJ, Tchacarova P, Petkov GH, Efremov GD (2001) An Alu insert as the cause of a severe form of hemophilia A. Acta Haematol 106:126–129

    Article  CAS  PubMed  Google Scholar 

  • Szak ST, Pickeral OK, Makalowski W, Boguski MS, Landsman D, Boeke JD (2002) Molecular archeology of L1 insertions in the human genome. Genome Biol 3(10):research0052

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabatabaei SM, Heyworth JS, Knuiman MW, Fritschi L (2010) Dietary benzo[a]pyrene intake from meat and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 19(12):3182–3184

    Article  CAS  PubMed  Google Scholar 

  • Takasu M, Hayashi R, Maruya E, Ota M, Imura K, Kougo K et al (2007) Deletion of entire HLA-A gene accompanied by an insertion of a retrotransposon. Tissue Antigens 70(2):144–150

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi-Ikeda M, Kobayashi K, Kanagawa M, Yu C, Mori K, Oda T et al (2011) Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature 478:127–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tappino B, Regis S, Corsolini F, Filocamo M (2008) An Alu insertion in compound heterozygosity with a microduplication in GNPTAB gene underlies Mucolipidosis II. Mol Genet Metab 93(2):129–133

    Article  CAS  PubMed  Google Scholar 

  • Temtamy SA, Aglan MS, Valencia M, Cocchi G, Pacheco M, Ashour AM et al (2008) Long interspersed nuclear element-1 (LINE1)-mediated deletion of EVC, EVC2, C4orf6, and STK32B in ellis-van Creveld syndrome with borderline intelligence. Hum Mutat 29(7):931–938

    Article  CAS  PubMed  Google Scholar 

  • Teugels E, De Brakeleer S, Goelen G, Lissens W, Sermijn E, De Grève J (2005) De novo Alu element insertions targeted to a sequence common to the BRCA1 and BRCA2 genes. Hum Mutat 26(3):284

    Article  PubMed  Google Scholar 

  • Tighe PJ, Stevens SE, Dempsey S, Le Deist F, Rieux-Laucat F, Edgar JDM (2002) Inactivation of the Fas gene by Alu insertion: retrotransposition in an intron causing splicing variation and autoimmune lymphoproliferative syndrome. Genes Immun 3(Suppl 1):S66–S70

    Article  CAS  PubMed  Google Scholar 

  • Toyokuni S, Okamoto K, Yodoi J, Hiai H (1995) Persistent oxidative stress in cancer. FEBS Lett 358(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Tubio JMC, Li Y, Ju YS, Martincorena I, Cooke SL, Tojo M et al (2014) Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 345(6196):1251343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tucker BA, Scheetz TE, Mullins RF, DeLuca AP, Hoffmann JM, Johnston RM et al (2011) Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa. Proc Natl Acad Sci U S A 108(34):E569–E576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udaka T, Okamoto N, Aramaki M, Torii C, Kosaki R, Hosokai N et al (2007) An Alu retrotransposition-mediated deletion of CHD7 in a patient with CHARGE syndrome. Am J Med Genet A 143(7):721–726

    Article  CAS  Google Scholar 

  • Van Den Hurk JAJM, Van De Pol DJR, Wissinger B, Van Driel MA, Hoefsloot LH, De Wijs IJ et al (2003) Novel types of mutation in the choroideremia (CHM) gene: a full-length L1 insertion and an intronic mutation activating a cryptic exon. Hum Genet 113(3):268–275

    Article  PubMed  CAS  Google Scholar 

  • Van Valen L (1973) A new evolutionary theory. Evol Theory 1(1):1–30

    Google Scholar 

  • Varon R, Gooding R, Steglich C, Marns L, Tang H, Angelicheva D et al (2003) Partial deficiency of the C-terminal-domain phosphatase of RNA polymerase II is associated with congenital cataracts facial dysmorphism neuropathy syndrome. Nat Genet 35(2):185–189

    Article  CAS  PubMed  Google Scholar 

  • Vidaud D, Tartary M, Costa J (1993) Nucleotide substitutions at the-6 position in the promoter region of the factor IX gene result in different severity of hemophilia B Leyden: consequences for genetic counseling. Hum Genet 91(3):241–244

    Article  CAS  PubMed  Google Scholar 

  • Vogt J, Bengesser K, Claes KB, Wimmer K, Mautner V-F, van Minkelen R et al (2014) SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints. Genome Biol 15(6):R80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallace MR, Andersen LB, Saulino AM, Gregory PE, Glover TW, Collins FS (1991) A de novo Alu insertion results in neurofibromatosis type 1. Nature 353(6347):864–866

    Article  CAS  PubMed  Google Scholar 

  • Walsh CP, Chaillet JR, Bestor TH (1998) Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20(2):116–117

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Lerer I, Gueta Z, Sagi M, Kadouri L, Peretz T et al (2001) A deletion/insertion mutation in the BRCA2 gene in a breast cancer family: a possible role of the Alu-polyA tail in the evolution of the deletion. Genes Chromosom Cancer 31(1):91–95

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Song L, Grover D, Azrak S, Batzer MA, Liang P (2006) dbRIP: a highly integrated database of retrotransposon insertion polymorphisms in humans. Hum Mutat 27:323–329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H et al (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20(13):1732–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453(7194):539–543

    Article  CAS  PubMed  Google Scholar 

  • Wheelan SJ, Aizawa Y, Han JS, Boeke JD (2005) Gene-breaking: A new paradigm for human retrotransposon-mediated gene evolution. Genome Res 15(8):1073–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wimmer K, Callens T, Wernstedt A, Messiaen L (2011) The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion. PLoS Genet 7(11):e1002371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodcock DM, Lawler CB, Linsenmeyer ME, Doherty JP, Warren WD (1997) Asymmetric methylation in the hypermethylated CpG promoter region of the human L1 retrotransposon. J Biol Chem 272(12):7810–7816

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Lu Y, Ding Q, You G, Dai J, Xi X et al (2014) Characterisation of large F9 deletions in seven unrelated patients with severe haemophilia B. Thromb Haemost 112(3):459–465

    Article  CAS  PubMed  Google Scholar 

  • Wulff K, Gazda H, Schröder W, Robicka-Milewska R, Herrmann FH (2000) Identification of a novel large F9 gene mutation-an insertion of an Alu repeated DNA element in exon e of the factor 9 gene. Hum Mutat 15(3):299

    Article  CAS  PubMed  Google Scholar 

  • Xing J, Zhang Y, Han K, Salem AH, Sen SK, Huff CD et al (2009) Mobile elements create structural variation: analysis of a complete human genome. Genome Res 19(9):1516–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang N, Kazazian HH (2006) L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13(9):763–771

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13(8):335–340

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Dipple KM, Vilain E, Huang BL, Finlayson G, Therrell BL et al (2000) AluY insertion (IVS4-52ins316alu) in the glycerol kinase gene from an individual with benign glycerol kinase deficiency. Hum Mutat 15(4):316–323

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haig H. Kazazian Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Doucet-O’Hare, T.T., Kazazian, H.H. (2017). Retrotransposon Contribution to Genomic Plasticity. In: Cristofari, G. (eds) Human Retrotransposons in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-48344-3_3

Download citation

Publish with us

Policies and ethics