Skip to main content

Contribution of Retrotransposable Elements to Aging

  • Chapter
  • First Online:
Human Retrotransposons in Health and Disease

Abstract

Retrotransposable elements (RTEs) are abundant in the genomes of most species and continue to evolve and adapt to the defense mechanisms of their host cells. RTEs have contributed to the evolution of their hosts by creating germline genomic diversity, but under most circumstances retrotransposition has deleterious consequences. Our understanding of RTE activity in somatic cells and tissues has lagged, largely because we lacked effective tools to study them in these contexts. Recent evidence indicates that RTEs are more active in somatic cells than anticipated, for example in the nervous system, during the development of cancer, or in senescent cells and aging tissues. This raises the important question of whether RTEs contribute actively to these processes and the development of pathologies, and if so, how. In this review we focus on the role of RTEs in the biology of aging: the evidence for their activation, the host defense mechanisms whose failure may allow this, the consequences of the ensuing RTE activity, and the prospects that targeting RTEs may provide new avenues of treating some age-associated disorders.

Jill A. Kreiling and Brian C. Jones are co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Naqvi A, Hendriks GJ et al (2014) Impact of age-associated increase in 2′-O-methylation of miRNAs on aging and neurodegeneration in Drosophila. Genes Dev 28:44–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abyzov A, Iskow R, Gokcumen O et al (2013) Analysis of variable retroduplications in human populations suggests coupling of retrotransposition to cell division. Genome Res 23:2042–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvares SM, Mayberry GA, Joyner EY et al (2014) H3K4 demethylase activities repress proliferative and postmitotic aging. Aging Cell 13:245–253

    Article  CAS  PubMed  Google Scholar 

  • Aravin AA, Sachidanandam R, Bourc’his D et al (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31:785–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aravin AA, Sachidanandam R, Girard A et al (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316:744–747

    Article  CAS  PubMed  Google Scholar 

  • Avrahami D, Li C, Zhang J et al (2015) Aging-dependent demethylation of regulatory elements correlates with chromatin state and improved beta cell function. Cell Metab 22:619–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahar R, Hartmann CH, Rodriguez KA et al (2006) Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441:1011–1014

    Article  CAS  PubMed  Google Scholar 

  • Baillie JK, Barnett MW, Upton KR et al (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479:534–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker DJ, Childs BG, Durik M et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banchereau J, Pascual V (2006) Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25:383–392

    Article  CAS  PubMed  Google Scholar 

  • Beck-Engeser GB, Eilat D, Wabl M (2011) An autoimmune disease prevented by anti-retroviral drugs. Retrovirology 8:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  CAS  PubMed  Google Scholar 

  • Bhoj VG, Chen ZJ (2008) Linking retroelements to autoimmunity. Cell 134:569–571

    Article  CAS  PubMed  Google Scholar 

  • Brennecke J, Aravin AA, Stark A et al (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103

    Article  CAS  PubMed  Google Scholar 

  • Cao K, Blair CD, Faddah DA et al (2011) Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J Clin Invest 121:2833–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmell MA, Girard A, van de Kant HJ et al (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12:503–514

    Article  CAS  PubMed  Google Scholar 

  • Carpenter JA, Keegan LP, Wilfert L et al (2009) Evidence for ADAR-induced hypermutation of the Drosophila sigma virus (Rhabdoviridae). BMC Genet 10:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandra T, Ewels PA, Schoenfelder S et al (2015) Global reorganization of the nuclear landscape in senescent cells. Cell Rep 10:471–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra T, Kirschner K, Thuret JY et al (2012) Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol Cell 47:203–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Ruiz PD, McKimpson WM et al (2015) MacroH2A1 and ATM play opposing roles in paracrine senescence and the senescence-associated Secretory phenotype. Mol Cell 59:719–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LL, DeCerbo JN, Carmichael GG (2008) Alu element-mediated gene silencing. EMBO J 27:1694–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chenais B (2013) Transposable elements and human cancer: a causal relationship? Biochim Biophys Acta 1835:28–35

    CAS  PubMed  Google Scholar 

  • Clancy DJ, Gems D, Harshman LG et al (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106

    Article  CAS  PubMed  Google Scholar 

  • Coufal NG, Garcia-Perez JL, Peng GE et al (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Criscione SW, De Cecco M, Siranosian B et al (2016) Reorganization of chromosome architecture in replicative cellular senescence. Sci Adv 2:e1500882

    PubMed  PubMed Central  Google Scholar 

  • Criscione SW, Zhang Y, Thompson W et al (2014) Transcriptional landscape of repetitive elements in normal and cancer human cells. BMC Genomics 15:583

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruickshanks HA, McBryan T, Nelson DM et al (2013a) Senescent cells harbour features of the cancer epigenome. Nat Cell Biol 15:1495–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruickshanks HA, Tufarelli C (2009) Isolation of cancer-specific chimeric transcripts induced by hypomethylation of the LINE-1 antisense promoter. Genomics 94:397–406

    Article  CAS  PubMed  Google Scholar 

  • Cruickshanks HA, Vafadar-Isfahani N, Dunican DS et al (2013b) Expression of a large LINE-1-driven antisense RNA is linked to epigenetic silencing of the metastasis suppressor gene TFPI-2 in cancer. Nucleic Acids Res 41:6857–6869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czech B, Malone CD, Zhou R et al (2008) An endogenous small interfering RNA pathway in Drosophila. Nature 453:798–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai L, Huang Q, Boeke JD (2011) Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem 12:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang W, Steffen KK, Perry R et al (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459:802–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang W, Sutphin GL, Dorsey JA et al (2014) Inactivation of yeast Isw2 chromatin remodeling enzyme mimics longevity effect of calorie restriction via induction of genotoxic stress response. Cell Metab 19:952–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day K, Waite LL, Thalacker-Mercer A et al (2013) Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol 14:R102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Cecco M, Criscione SW, Peckham EJ et al (2013a) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12:247–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Cecco M, Criscione SW, Peterson AL et al (2013b) Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY) 5:867–883

    Article  Google Scholar 

  • de Koning AP, Gu W, Castoe TA et al (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7:e1002384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deininger P (2011) Alu elements: know the SINEs. Genome Biol 12:236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Giacomo M, Comazzetto S, Saini H et al (2013) Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol Cell 50:601–608

    Article  PubMed  CAS  Google Scholar 

  • Dixon JR, Jung I, Selvaraj S et al (2015) Chromatin architecture reorganization during stem cell differentiation. Nature 518:331–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doucet-O’Hare TT, Rodic N, Sharma R et al (2015) LINE-1 expression and retrotransposition in Barrett's esophagus and esophageal carcinoma. Proc Natl Acad Sci U S A 112:E4894–E4900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elgin SC, Grewal SI (2003) Heterochromatin: silence is golden. Curr Biol 13:R895–R898

    Article  CAS  PubMed  Google Scholar 

  • Elsasser SJ, Noh KM, Diaz N et al (2015) Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 522:240–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erwin JA, Marchetto MC, Gage FH (2014) Mobile DNA elements in the generation of diversity and complexity in the brain. Nat Rev Neurosci 15:497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evrony GD, Cai X, Lee E et al (2012) Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151:483–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evrony GD, Lee E, Mehta BK et al (2015) Cell lineage analysis in human brain using endogenous retroelements. Neuron 85:49–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evrony GD, Lee E, Park PJ et al (2016) Resolving rates of mutation in the brain using single-neuron genomics. Elife 5:e12966

    Article  PubMed  PubMed Central  Google Scholar 

  • Ewing AD, Gacita A, Wood LD et al (2015) Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution. Genome Res 25:1536–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewing AD, Kazazian HH Jr (2010) High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res 20:1262–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagegaltier D, Bouge AL, Berry B et al (2009) The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. Proc Natl Acad Sci U S A 106:21258–21263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farkash EA, Luning Prak ET (2006) DNA damage and L1 retrotransposition. J Biomed Biotechnol 2006:37285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faulkner GJ, Kimura Y, Daub CO et al (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41:563–571

    Article  CAS  PubMed  Google Scholar 

  • Feltzin VL, Khaladkar M, Abe M et al (2015) The exonuclease Nibbler regulates age-associated traits and modulates piRNA length in Drosophila. Aging Cell 14:443–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez AF, Bayon GF, Urdinguio RG et al (2015) H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells. Genome Res 25:27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feser J, Truong D, Das C et al (2010) Elevated histone expression promotes life span extension. Mol Cell 39:724–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feser J, Tyler J (2011) Chromatin structure as a mediator of aging. FEBS Lett 585:2041–2048

    Article  CAS  PubMed  Google Scholar 

  • Forstemann K, Horwich MD, Wee L et al (2007) Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell 130:287–297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fowler BJ, Gelfand BD, Kim Y et al (2014) Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity. Science 346:1000–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9

    Article  PubMed  Google Scholar 

  • Ganguly A, Dunbar T, Chen P et al (2003) Exon skipping caused by an intronic insertion of a young Alu Yb9 element leads to severe hemophilia A. Hum Genet 113:348–352

    Article  CAS  PubMed  Google Scholar 

  • Ge ZJ, Schatten H, Zhang CL et al (2015) Oocyte ageing and epigenetics. Reproduction 149:R103–R114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelfand BD, Wright CB, Kim Y et al (2015) Iron toxicity in the retina requires Alu RNA and the NLRP3 inflammasome. Cell Rep 11:1686–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghildiyal M, Seitz H, Horwich MD et al (2008) Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320:1077–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannakou ME, Goss M, Junger MA et al (2004) Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305:361

    Article  CAS  PubMed  Google Scholar 

  • Goldman RD, Shumaker DK, Erdos MR et al (2004) Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 101:8963–8968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer EL, Maures TJ, Hauswirth AG et al (2010) Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466:383–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer EL, Maures TJ, Ucar D et al (2011) Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479:365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46

    Article  CAS  PubMed  Google Scholar 

  • Gu T, Elgin SC (2013) Maternal depletion of Piwi, a component of the RNAi system, impacts heterochromatin formation in Drosophila. PLoS Genet 9:e1003780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guelen L, Pagie L, Brasset E et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951

    Article  CAS  PubMed  Google Scholar 

  • Hamdorf M, Idica A, Zisoulis DG et al (2015) miR-128 represses L1 retrotransposition by binding directly to L1 RNA. Nat Struct Mol Biol 22:824–831

    Article  CAS  PubMed  Google Scholar 

  • Han S, Brunet A (2012) Histone methylation makes its mark on longevity. Trends Cell Biol 22:42–49

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  • Hanzelmann S, Beier F, Gusmao EG et al (2015) Replicative senescence is associated with nuclear reorganization and with DNA methylation at specific transcription factor binding sites. Clin Epigenetics 7:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Harries LW, Hernandez D, Henley W et al (2011) Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell 10:868–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heale BS, Keegan LP, McGurk L et al (2009) Editing independent effects of ADARs on the miRNA/siRNA pathways. EMBO J 28:3145–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heras SR, Macias S, Caceres JF et al (2014) Control of mammalian retrotransposons by cellular RNA processing activities. Mob Genet Elements 4:e28439

    Article  PubMed  PubMed Central  Google Scholar 

  • Heras SR, Macias S, Plass M et al (2013) The Microprocessor controls the activity of mammalian retrotransposons. Nat Struct Mol Biol 20:1173–1181

    Article  CAS  PubMed  Google Scholar 

  • Hills SA, Diffley JF (2014) DNA replication and oncogene-induced replicative stress. Curr Biol 24:R435–R444

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Chen K, Xia Z et al (2014) Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev 28:396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CR, Burns KH, Boeke JD (2012) Active transposition in genomes. Annu Rev Genet 46:651–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CR, Schneider AM, Lu Y et al (2010) Mobile interspersed repeats are major structural variants in the human genome. Cell 141:1171–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hur K, Cejas P, Feliu J et al (2014) Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut 63:635–646

    Article  CAS  PubMed  Google Scholar 

  • Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060

    Article  CAS  PubMed  Google Scholar 

  • Hwangbo DS, Gershman B, Tu MP et al (2004) Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429:562–566

    Article  CAS  PubMed  Google Scholar 

  • Jeon HJ, Kim YS, Park JS et al (2015) Age-related change in gammaH2AX of Drosophila muscle: its significance as a marker for muscle damage and longevity. Biogerontology 16:503–516

    Article  CAS  PubMed  Google Scholar 

  • Jepson JE, Savva YA, Yokose C et al (2011) Engineered alterations in RNA editing modulate complex behavior in Drosophila: regulatory diversity of adenosine deaminase acting on RNA (ADAR) targets. J Biol Chem 286:8325–8337

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Du G, Tobias E et al (2013) Dietary and genetic effects on age-related loss of gene silencing reveal epigenetic plasticity of chromatin repression during aging. Aging 5:813–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin C, Li J, Green CD et al (2011) Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab 14:161–172

    Article  CAS  PubMed  Google Scholar 

  • Jones RB, Garrison KE, Wong JC et al (2008) Nucleoside analogue reverse transcriptase inhibitors differentially inhibit human LINE-1 retrotransposition. PLoS One 3:e1547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones BC, Wood JG, Chang C et al (2016) A somatic piRNA pathway in the Drosophila fat body ensures metabolic homeostasis and normal lifespan. Nat Com (in press)

    Google Scholar 

  • Kaneko H, Dridi S, Tarallo V et al (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471:325–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapahi P, Zid BM, Harper T et al (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7:131–137

    Article  CAS  PubMed  Google Scholar 

  • Kawamura Y, Saito K, Kin T et al (2008) Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature 453:793–797

    Article  CAS  PubMed  Google Scholar 

  • Kennedy BK, Gotta M, Sinclair DA et al (1997) Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89:381–391

    Article  CAS  PubMed  Google Scholar 

  • Kenyon C, Chang J, Gensch E et al (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  CAS  PubMed  Google Scholar 

  • Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Villeponteau B, Jazwinski SM (1996) Effect of replicative age on transcriptional silencing near telomeres in Saccharomyces cerevisiae. Biochem Biophys Res Commun 219:370–376

    Article  CAS  PubMed  Google Scholar 

  • Kosar M, Bartkova J, Hubackova S et al (2011) Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16(ink4a). Cell Cycle 10:457–468

    Article  CAS  PubMed  Google Scholar 

  • Kreiling JA, Tamamori-Adachi M, Sexton AN et al (2011) Age-associated increase in heterochromatic marks in murine and primate tissues. Aging Cell 10:292–304

    Article  CAS  PubMed  Google Scholar 

  • Kunarso G, Chia NY, Jeyakani J et al (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42:631–634

    Article  CAS  PubMed  Google Scholar 

  • Larson K, Yan SJ, Tsurumi A et al (2012) Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet 8:e1002473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EJ, Banerjee S, Zhou H et al (2011) Identification of piRNAs in the central nervous system. RNA 17:1090–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SS, Kennedy S, Tolonen AC et al (2003) DAF-16 target genes that control C. elegans life-span and metabolism. Science 300:644–647

    Article  CAS  PubMed  Google Scholar 

  • Lev-Maor G, Ram O, Kim E et al (2008) Intronic Alus influence alternative splicing. PLoS Genet 4:e1000204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levin HL, Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 12:615–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Greer C, Eisenman RN et al (2010) Essential functions of the histone demethylase lid. PLoS Genet 6:e1001221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Prazak L, Chatterjee N et al (2013) Activation of transposable elements during aging and neuronal decline in Drosophila. Nat Neurosci 16:529–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim DH, Oh CT, Lee L et al (2011) The endogenous siRNA pathway in Drosophila impacts stress resistance and lifespan by regulating metabolic homeostasis. FEBS Lett 585:3079–3085

    Article  CAS  PubMed  Google Scholar 

  • Liu J (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Abe M, Sabin LR et al (2011) The exoribonuclease Nibbler controls 3′ end processing of microRNAs in Drosophila. Curr Biol 21:1888–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malki S, van der Heijden GW, O’Donnell KA et al (2014) A role for retrotransposon LINE-1 in fetal oocyte attrition in mice. Dev Cell 29:521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez J, Patkaniowska A, Urlaub H et al (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Leung D, Miyashita H et al (2010) Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464:927–931

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35

    Article  CAS  PubMed  Google Scholar 

  • Maures TJ, Greer EL, Hauswirth AG et al (2011) The H3K27 demethylase UTX‐1 regulates C. elegans lifespan in a germline‐independent, insulin‐dependent manner. Aging Cell 10:980–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell PH, Burhans WC, Curcio MJ (2011) Retrotransposition is associated with genome instability during chronological aging. Proc Natl Acad Sci U S A 108:20376–20381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazin P, Xiong J, Liu X et al (2013) Widespread splicing changes in human brain development and aging. Mol Syst Biol 9:633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McColl G, Killilea DW, Hubbard AE et al (2008) Pharmacogenetic analysis of lithium-induced delayed aging in Caenorhabditis elegans. J Biol Chem 283:350–357

    Article  CAS  PubMed  Google Scholar 

  • McCord RP, Nazario-Toole A, Zhang H et al (2013) Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res 23:260–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  CAS  PubMed  Google Scholar 

  • Montoya-Durango DE, Liu Y, Teneng I et al (2009) Epigenetic control of mammalian LINE-1 retrotransposon by retinoblastoma proteins. Mutat Res 665:20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montoya-Durango DE, Ramos KA, Bojang P et al (2016) LINE-1 silencing by retinoblastoma proteins is effected through the nucleosomal and remodeling deacetylase multiprotein complex. BMC Cancer 16:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muotri AR, Chu VT, Marchetto MC et al (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903–910

    Article  CAS  PubMed  Google Scholar 

  • Muotri AR, Marchetto MC, Coufal NG et al (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468:443–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narita M, Nunez S, Heard E et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    Article  CAS  PubMed  Google Scholar 

  • Navin N, Kendall J, Troge J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni Z, Ebata A, Alipanahiramandi E et al (2012) Two SET domain containing genes link epigenetic changes and aging in Caenorhabditis elegans. Aging Cell 11:315–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nigumann P, Redik K, Matlik K et al (2002) Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79:628–634

    Article  CAS  PubMed  Google Scholar 

  • O'Sullivan RJ, Karlseder J (2012) The great unravelling: chromatin as a modulator of the aging process. Trends Biochem Sci 37:466–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O'Sullivan RJ, Kubicek S, Schreiber SL et al (2010) Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol 17:1218–1225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oberdoerffer P, Sinclair DA (2007) The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol 8:692–702

    Article  CAS  PubMed  Google Scholar 

  • Peleg S, Feller C, Forne I et al (2016) Life span extension by targeting a link between metabolism and histone acetylation in Drosophila. EMBO Rep 17:455–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrat PN, DasGupta S, Wang J et al (2013) Transposition-driven genomic heterogeneity in the Drosophila brain. Science 340:91–95

    Article  CAS  PubMed  Google Scholar 

  • Pichlmair A, Reis e Sousa C (2007) Innate recognition of viruses. Immunity 27:370–383

    Article  CAS  PubMed  Google Scholar 

  • Polak P, Domany E (2006) Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC Genomics 7:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rai TS, Adams PD (2013) Lessons from senescence: chromatin maintenance in non-proliferating cells. Biochim Biophys Acta 1819:322–331

    Article  PubMed  CAS  Google Scholar 

  • Rieder LE, Staber CJ, Hoopengardner B et al (2013) Tertiary structural elements determine the extent and specificity of messenger RNA editing. Nat Commun 4:2232

    Article  PubMed  CAS  Google Scholar 

  • Rodic N, Steranka JP, Makohon-Moore A et al (2015) Retrotransposon insertions in the clonal evolution of pancreatic ductal adenocarcinoma. Nat Med 21:1060–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogina B, Reenan RA, Nilsen SP et al (2000) Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290:2137–2140

    Article  CAS  PubMed  Google Scholar 

  • Roman-Gomez J, Jimenez-Velasco A, Agirre X et al (2005) Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene 24:7213–7223

    Article  CAS  PubMed  Google Scholar 

  • Ross RJ, Weiner MM, Lin H (2014) PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505:353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe HM, Jakobsson J, Mesnard D et al (2010) KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463:237–240

    Article  CAS  PubMed  Google Scholar 

  • Rozhkov NV, Hammell M, Hannon GJ (2013) Multiple roles for Piwi in silencing Drosophila transposons. Genes Dev 27:400–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadaie M, Salama R, Carroll T et al (2013) Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev 27:1800–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarg B, Koutzamani E, Helliger W et al (2002) Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J Biol Chem 277:39195–39201

    Article  CAS  PubMed  Google Scholar 

  • Savva YA, Jepson JE, Chang YJ et al (2013) RNA editing regulates transposon-mediated heterochromatic gene silencing. Nat Commun 4:2745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Savva YA, Rieder LE, Reenan RA (2012) The ADAR protein family. Genome Biol 13:252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scadden AD, Smith CW (2001) RNAi is antagonized by A→I hyper-editing. EMBO Rep 2:1107–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedivy JM, Banumathy G, Adams PD (2008) Aging by epigenetics—a consequence of chromatin damage? Exp Cell Res 314:1909–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedivy JM, Kreiling JA, Neretti N et al (2013) Death by transposition—the enemy within? Bioessays 35:1035–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukla R, Upton KR, Munoz-Lopez M et al (2013) Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 153:101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shumaker DK, Dechat T, Kohlmaier A et al (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103:8703–8708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siebold AP, Banerjee R, Tie F et al (2010) Polycomb repressive complex 2 and Trithorax modulate Drosophila longevity and stress resistance. Proc Natl Acad Sci U S A 107:169–174

    Article  CAS  PubMed  Google Scholar 

  • Sinclair DA, Oberdoerffer P (2009) The ageing epigenome: damaged beyond repair? Ageing Res Rev 8:189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  PubMed  Google Scholar 

  • Smeal T, Claus J, Kennedy B et al (1996) Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84:633–642

    Article  CAS  PubMed  Google Scholar 

  • Solyom S, Ewing AD, Rahrmann EP et al (2012) Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res 22:2328–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sookdeo A, Hepp CM, McClure MA et al (2013) Revisiting the evolution of mouse LINE-1 in the genomic era. Mob DNA 4:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speek M (2001) Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 21:1973–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stetson DB (2009) Connections between antiviral defense and autoimmunity. Curr Opin Immunol 21:244–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stetson DB, Ko JS, Heidmann T et al (2008) Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134:587–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Yi SV (2015) Impacts of chromatin states and long-range genomic segments on aging and DNA methylation. PLoS One 10:e0128517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swanson EC, Manning B, Zhang H et al (2013) Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. J Cell Biol 203:929–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taft RJ, Pang KC, Mercer TR et al (2010) Non-coding RNAs: regulators of disease. J Pathol 220:126–139

    Article  CAS  PubMed  Google Scholar 

  • Tarallo V, Hirano Y, Gelfand BD et al (2012) DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149:847–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatar M, Kopelman A, Epstein D et al (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110

    Article  CAS  PubMed  Google Scholar 

  • Teneng I, Montoya-Durango DE, Quertermous JL et al (2011) Reactivation of L1 retrotransposon by benzo(a)pyrene involves complex genetic and epigenetic regulation. Epigenetics 6:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tollervey JR, Wang Z, Hortobagyi T et al (2011) Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Res 21:1572–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tufarelli C, Stanley JA, Garrick D et al (2003) Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 34:157–165

    Article  CAS  PubMed  Google Scholar 

  • Upton KR, Gerhardt DJ, Jesuadian JS et al (2015) Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161:228–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vagin VV, Sigova A, Li C et al (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313:320–324

    Article  CAS  PubMed  Google Scholar 

  • Van Meter M, Kashyap M, Rezazadeh S et al (2014) SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat Commun 5:5011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varshney D, Vavrova-Anderson J, Oler AJ et al (2015) SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation. Nat Commun 6:6569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkman HE, Stetson DB (2014) The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 15:415–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace NA, Belancio VP, Deininger PL (2008) L1 mobile element expression causes multiple types of toxicity. Gene 419:75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Ma Z, Niu K et al (2016) Antagonistic roles of Nibbler and Hen1 in modulating piRNA 3′ ends in Drosophila. Development 143:530–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Zhang Z, Blackwell K et al (2005) Vigilins bind to promiscuously A-to-I-edited RNAs and are involved in the formation of heterochromatin. Curr Biol 15:384–391

    Article  CAS  PubMed  Google Scholar 

  • Warren LA, Rossi DJ, Schiebinger GR et al (2007) Transcriptional instability is not a universal attribute of aging. Aging Cell 6:775–782

    Article  CAS  PubMed  Google Scholar 

  • Weber B, Kimhi S, Howard G et al (2010) Demethylation of a LINE-1 antisense promoter in the cMet locus impairs Met signalling through induction of illegitimate transcription. Oncogene 29:5775–5784

    Article  CAS  PubMed  Google Scholar 

  • Wilson EB, Yamada DH, Elsaesser H et al (2013) Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science 340:202–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RC, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239

    Article  CAS  PubMed  Google Scholar 

  • Wolff EM, Byun HM, Han HF et al (2010) Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 6:e1000917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wood JG, Hillenmeyer S, Lawrence C et al (2010) Chromatin remodeling in the aging genome of Drosophila. Aging Cell 9:971–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood JG, Jones BC, Jiang N et al. (2016) Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila. Proc Natl Acad Sci USA, 113:11277-11282

    Google Scholar 

  • Yan Z, Hu HY, Jiang X et al (2011) Widespread expression of piRNA-like molecules in somatic tissues. Nucleic Acids Res 39:6596–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang N, Kazazian HH Jr (2006) L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13:763–771

    Article  CAS  PubMed  Google Scholar 

  • Yang YG, Lindahl T, Barnes DE (2007) Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131:873–886

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Gius D, Onyango P et al (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451:202–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Chen W, Adams PD (2007) Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol 27:2343–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Li J, Suzuki K et al (2015) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348:1160–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the following sources of financial support: J.A.K., NIH K01 AG039410; B.C.J., NIH T32 AG041688, F31 AG047736; M.D.C., AFAR postdoctoral fellowship; S.W.C., NIH T32 GM007601, F31 AG050365; N.N., NIH R56 AG050582; S.L.H., NIH R01 AG024353, NIH P01 AG051449 and J.M.S., NIH R37 AG016694, NIH P01 AG051449.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen L. Helfand or John M. Sedivy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kreiling, J.A. et al. (2017). Contribution of Retrotransposable Elements to Aging. In: Cristofari, G. (eds) Human Retrotransposons in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-48344-3_13

Download citation

Publish with us

Policies and ethics