Skip to main content

Mechanical Properties of Various Archwires and Their Clinical Application in the PASS System

  • Chapter
  • First Online:
Physiologic Anchorage Control

Abstract

Clinical studies have revealed that maxillary molar mesialization could occur in physiological drifting and during orthodontic treatment. The straight wire appliance (SWA) using a continuous wire made of shape memory alloy (SMA) might result in an undesired maxillary molar mesialization or an anchorage loss in the initial aligning stage. Recent findings suggest that a maxillary molar tube including a –25° auxiliary tube might minimize this anchorage loss. It was theorized that this auxiliary tube serving as a reserved v bend could preclude the possibility of molar mesialization in SWA. This chapter introduces the clinical implications of this new appliance, called the PASS system. The archwire sequence for the PASS is similar to that of SWA, except that the –25° auxiliary tube is only used for SMA at the initial stage. The mechanical properties of various material types of archwires associated with the PASS system are reviewed. Analysis was completed on the interactions between the archwire and the PASS system, such as the stress-strain relationship and frictional forces. Both low-friction and distalization forces are revealed from our data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim YE, Nanda RS, Sinha PK (2002) Transition of molar relationships in different skeletal growth patterns. Am J Orthod Dentofacial Orthop 121(3):280–290

    Article  PubMed  Google Scholar 

  2. Su H, Han B, Li S et al (2014) Compensation trends of the angulation of first molars: retrospective study of 1403 malocclusion cases. Int J Oral Sci 6:175–181

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sillman JH (1947) Changes in the dental arches as a factor in orthodontic diagnosis. Am J Orthod 33(9):565–581

    PubMed  Google Scholar 

  4. Zhang Y, Xia X, Deng F et al (2012) Analysis of tip back bend on initial displacement of the maxillary first molar in Tip-Edge force system by three-dimensional finite element method. Hua Xi Kou Qiang Yi Xue Za Zhi 30(3):329–332

    PubMed  Google Scholar 

  5. Su H, Han B, Li S (2014) Factors predisposing to maxillary anchorage loss: a retrospective study of 1403 cases. PLoS One 9(10):e109561

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tseng YC, Hsieh CH, Chen CH et al (2006) The application of mini-implants for orthodontic anchorage. Int J Oral Maxillofac Surg 35:704–707

    Article  PubMed  Google Scholar 

  7. Sawa Y, Goto K, Suzuki N et al (2001) The new method for the maxillary retraction of the anterior teeth using a titanium microscrew as anchorage. Orthodontic Waves 60:328–331

    Google Scholar 

  8. Creekmore TD, Eklund MK (1983) The possibility of skeletal anchorage. J Clin Orthod 17:266–269

    PubMed  Google Scholar 

  9. Melsen B (2005) Mini-implants: where are we? J Clin Orthod 39:539–547

    PubMed  Google Scholar 

  10. Chen S, Chen G, Xu T (2015) Clinical application of the PASS technique. J Clin Orthod 49(8):508–515

    PubMed  Google Scholar 

  11. Proffit WR (2000) Contemporary orthodontics, 3rd edn. Mosby, St. Louis

    Google Scholar 

  12. McLaughlin RP, Bennett JC, Trevisi HJ (2002) Systemized orthodontic treatment mechanics. Elsevier Science, Los Angeles

    Google Scholar 

  13. Goldberg AJ, Morton J, Burstone CJ (1983) The flexure modulus of elasticity of orthodontic wires. J Dent Res 62:856–858

    Article  PubMed  Google Scholar 

  14. Burstone CJ, Qin B, Morton JY (1985) Chinese NiTiwire-A new orthodontic alloy. Am J Orthod 87:445–452

    Article  PubMed  Google Scholar 

  15. Burstone CJ, Goldberg AJ (1980) Beta-titanium: a new orthodontic alloy. Am J Orthod 77:121–132

    Article  PubMed  Google Scholar 

  16. Literature P (1977) Elgiloy and Truchrome Stainless Steel Orthodontic treatment wires. Rocky Mountain/Associates International, Denver

    Google Scholar 

  17. Kusy RP, Greenberg AR (1982) Comparison of the elastic properries of nickel-titanium and beta-titanium arch wires. Am J Orthod 82:199–205

    Article  PubMed  Google Scholar 

  18. Kusy RP, Mims L, Whitley JQ (2001) Mechanical characteristics of various tempers of as-received cobalt-chromium archwires. Am J Orthod Dentofacial Orthop 119:274–291

    Article  PubMed  Google Scholar 

  19. Kusy RP (1997) A review of contemporary archwires: their properties and characteristics. Angle Orthod 67:197–208

    PubMed  Google Scholar 

  20. Brantley WA (2001) Theodore eliades. In: Orthodontic materials- scientific and clinical aspects. George Thieme Verlag, Stuttgart

    Google Scholar 

  21. Andreasen GF, Barrett RD (1973) An evaluation of cobalt-substituted nitinol wire in orthodontics. Am J Orthod 63(5):462–470

    Article  PubMed  Google Scholar 

  22. Kusy RP (2000) Ongoing innovations in biomechanics and materials for the new millenium. Angle Orthod 70:366–376

    PubMed  Google Scholar 

  23. Kusy RP (2002) Orthodontic biomaterials: from the past to the present. Angle Orthod 72(6):501–512

    PubMed  Google Scholar 

  24. Andreasen GF, Brady PR (1972) A use hypothesis for 55 nitinol wire for orthodontics. Angle Orthod 42:172–177

    PubMed  Google Scholar 

  25. Santoro M, Nicolay OF, Cangialosi TJ (2001) Pseudoelasticity and thermoelasticity of nickel-titanium alloys: a clinically oriented review. Part I: temperature transitional ranges. Am J Orthod Dentofacial Orthop 119:587–593

    Article  PubMed  Google Scholar 

  26. Santoro M, Nicolay OF, Cangialosi TJ (2001) Pseudoelasticity and thermoelasticity of nickel-titanium alloys: a clinically oriented review. Part II: deactivation forces. Am J Orthod Dentofacial Orthop 119:594–603

    Article  PubMed  Google Scholar 

  27. Ko CC, Rocha E, Larson M (2012) Past, present, and future of finite element analysis in dentistry. In: Moratal D (ed) Finite element analysis – from biomedical applications to industrial developments. InTech-Open Access: http://www.intechopen.com, Croatia, pp 3–24

  28. Canales C, Larson M, Grauer D (2013) A novel biomechanical model assessing orthodontic, continuous archwire activation. Am J Orthod Dentofacial Orthop 143(2):281–290

    Article  PubMed  PubMed Central  Google Scholar 

  29. Natali AN, Pavan PG, Scarpa C (2004) Numerical analysis of tooth mobility: Formulation of a non-linear constitutive law for the periodontal ligament. Dent Mater 20(7):623–629

    Article  PubMed  Google Scholar 

  30. Qian L, Todo M, Morita Y et al (2009) Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament. Dent Mater 25(10):1285–1292

    Article  PubMed  Google Scholar 

  31. Uhlir R, Mayo V, Lin PH (2016) Biomechanical characterization of the periodontal ligament: orthodontic tooth movement. Angle Orthodontist (in press). DOI: 10.2319/092615-651.1

  32. Burstone CJ, Koenig HA (1988) Creative wire bending – the force system from step and V bend. Am J Orthod Dentofacial Orthop 93:59–67

    Article  PubMed  Google Scholar 

  33. Shackelford JF (1988) Introduction to materials science for engineers, 2nd edn. Macmillan, New York, pp. 70–88

    Google Scholar 

  34. Callister WD Jr (2013) Materials science and engineering: an introduction. Wiley

    Google Scholar 

  35. Courtiney TH (1990) Mechanical Behavior of Materials. McGraw-Hill Inc., New York, pp. 1–45

    Google Scholar 

  36. Gibson C (2016) Limiting factors affecting stage I treatment: a biomechanical perspective. MS Thesis, University of North Carolina, Chapel Hill

    Google Scholar 

  37. Articolo LC, Kusy RP (1999) Influence of angulation on the resistance to sliding in fixed appliances. Am J Orthod Dentofacial Orthop 115:39–51

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The work was supported, in part, by NIH/NIDCR R01DE022816-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Chang Ko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ko, CC., Chen, S., Zhang, H. (2017). Mechanical Properties of Various Archwires and Their Clinical Application in the PASS System. In: Xu, T. (eds) Physiologic Anchorage Control. Springer, Cham. https://doi.org/10.1007/978-3-319-48333-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48333-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48331-3

  • Online ISBN: 978-3-319-48333-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics