Skip to main content

Psychrophilic Microorganisms as Important Source for Biotechnological Processes

  • Chapter
  • First Online:
Adaption of Microbial Life to Environmental Extremes

Abstract

Most environments on Earth are cold, and microorganisms are found in the polar and alpine regions, oceans, cold lakes, caves, permafrost, snow, glaciers, and some man-made environments of low temperature. Representatives of Archaea, Bacteria, and Eukarya can be divided into psychrophiles, which are living only at low temperatures, and psychrotolerants, which can live at normal and also at low temperatures. Those that inhabit permanently cold environments possess cellular properties and mechanisms that are optimally adapted for growth at low temperatures. Such strains are of interest for biotechnological industries, for medicine, for environmental protection, and for waste treatment, having wide and still underused applications for human activities. This chapter reviews the isolation, ecology, cold adaptation, genetics, and practical applications of psychrophilic and psychrotolerant strains.

1Author was deceased at the time of publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abyzov SS, Mitskevich IN, Poglazova MN, Barkov NI, Lipenkov VY, Bobin NE, Koudryashov BB, Pashkevich VM (1998) Antarctic ice sheet as a model in search of life on other planets. Adv Space Res 22:363–368

    Article  CAS  Google Scholar 

  • Adapa V, Ramya LN, Pulicherla KK, Rao KR (2014) Cold active pectinases: advancing the food industry to the next generation. Appl Biochem Biotechnol 172:2324–2337

    Article  CAS  PubMed  Google Scholar 

  • Albino A, Marco S, Di Maro A, Chambery A, Masullo M, De Vendittis E (2012) Characterization of a cold-adapted glutathione synthetase from the psychrophile Pseudoalteromonas haloplanktis. Mol Biosyst. 8:2405–2414

    Article  CAS  PubMed  Google Scholar 

  • Alcaíno J, Cifuentes V, Baeza M (2015) Physiological adaptations of yeasts living in cold environments and their potential applications. World J Microbiol Biotechnol 31:1467–1473

    Article  PubMed  CAS  Google Scholar 

  • Ali MS, Ganasen M, Rahman RN, Chor AL, Salleh AB, Basri M (2013) Cold-adapted RTX lipase from antarctic Pseudomonas sp. strain AMS8: isolation, molecular modeling and heterologous expression. Protein J 32:317–325

    Google Scholar 

  • Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, Chong KW, Pilak O, Chew HH, De Maere MZ, Ting L, Katrib M, Ng C, Sowers KR, Galperin MY, Anderson IJ, Ivanova N, Dalin E, Martinez M, Lapidus A, Hauser L, Land M, Thomas T, Cavicchioli R (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISME J 3:1012–1035

    Article  CAS  PubMed  Google Scholar 

  • Amato P, Christner BC (2009) Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis. Appl Environ Microbiol 75:711–718

    Article  CAS  PubMed  Google Scholar 

  • Amoresano A, Andolfo A, Corsaro MM, Zocchi I, Petrescu I, Gerday I, Marino G (2000) Structural characterization of a xylanase from psychrophilic yeast by mass spectrometry. Glycobiology 10:451–458

    Article  CAS  PubMed  Google Scholar 

  • Andersson RE, Hedlund CB, Jonsson U (1979) Thermal inactivation of a heat-resistant lipase produced by the psychrotrophic bacterium Pseudomonas fluorescens. J Dairy Sci 62:361–367

    Article  CAS  PubMed  Google Scholar 

  • Angelaccio S, Florio R, Consalvi V, Festa G, Pascarella S (2012) Serine hydroxymethyltransferase from the cold adapted microorganism Psychromonas ingrahamii: a low temperature active enzyme with broad substrate specificity. Int J Mol Sci 13:1314–1326

    Google Scholar 

  • Aono E, Baba T, Ara T, Nishi T, Nakamichi T, Inamoto E, Toyonaga H, Hasegawa M, Takai Y, Okumura Y, Baba M, Tomita M, Kato C, Oshima T, Nakasone K, Mori H (2010) Complete genome sequence and comparative analysis of Shewanella violacea, a psychrophilic and piezophilic bacterium from deep sea floor sediments. Mol Biosyst. 6:1216–1226

    Article  CAS  PubMed  Google Scholar 

  • Araújo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransform 26:332–349

    Article  CAS  Google Scholar 

  • Auborn KJ, Fan S, Rosen EM, Goodwin L, Chandraskaren A, Williams DE, Chen D, Carter TH (2003) Indole-3-carbinol is a negative regulator of estrogen. J Nutr 133(Suppl):2470–2475

    Google Scholar 

  • Ayala-del-Rio HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, Di Bartolo G, Hauser L, Land M, Bakermans C, Rodrigues D, Klappenbach J, Zarka D, Larimer F, Richardson P, Murray A, Thomashow M, Tiedje JM (2010) The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to lowtemperature growth. Appl Environ Microbiol 76:2304–2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayub ND, Tribelli PM, Lopez N (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles 13:59–66

    Article  CAS  PubMed  Google Scholar 

  • Babalola OO, Kirby BM, Le Roes-Hill M, Cook AE, Craig CS, Burton SG, Cowan DA (2008) Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ Microbiol 11:566–576

    Article  CAS  Google Scholar 

  • Bae E, Phillips GN Jr (2004) Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. J Biol Chem 279:28202–28208

    Article  CAS  PubMed  Google Scholar 

  • Bahrim G, Negoiţă TG (2004) Effects of inorganic nitrogen and phosphorous sources on hydrolasecomplex production by the selected Bacillus subtilis Antarctic strain. Rom Biotechnol Lett 9:1925–1932

    CAS  Google Scholar 

  • Bahrim GE, Scântee M, Negoiţă TG (2007) Biotechnological conditions of amylase and proteasecomplex production and utilization involving filamentous bacteria. In: Annals Univers “Dunărea de Jos” Galaţi, (University Press, Galati, Romania) Fasc VI Food Technol, University Press, Galati, Romania. pp 76–81

    Google Scholar 

  • Bakermans C (2008) Limits for microbial life at subzero temperatures. In: Margesin R, Schinner R, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 17–28

    Google Scholar 

  • Bakermans C, Skidmore ML, Douglas S, McKay CP (2014) Molecular characterization of bacteria from permafrost of the Taylor Valley, Antarctica. FEMS Microbiol Ecol 89:331–346

    Article  CAS  PubMed  Google Scholar 

  • Barkay T, Poulain AJ (2007) Mercury (micro)biogeochemistry in polar environments. FEMS Microbiol Ecol 59:232–241

    Article  CAS  PubMed  Google Scholar 

  • Beg QK, Kapoor M, Mhajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications – a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  PubMed  Google Scholar 

  • Benešova E, Markova M, Kralova B (2005) Alpha glucosidase and beta glucosidase from psychrophilic strain Arthrobacter sp. C2-2. Czech J Food Sci 23:116–120

    Google Scholar 

  • Białkowska AM, Cieslinski H, Niowakowska KM, Kur J, Turkievich M (2009) A new beta-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification, characterization. Arch Microbiol 191:825–835

    Google Scholar 

  • Bjerga GEK, Lale R, Williamson A (2016) Engineering low-temperature expression systems for heterologous production of cold-adapted enzymes. Bioengineered 7:33–38. doi:10.1080/21655979.2015.1128589

    Article  CAS  PubMed  Google Scholar 

  • Bjerga GEK, Williamson AK (2015) Cold shock induction of recombinant Arctic environmental genes. BMC Biotechnology 15:78. doi:10.1186/s12896-015-0185-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blees J, Wenk C, Niemann C, Schubert C, Zopfi J, Veronesi M, Simona M, Lehmann M (2010) The isotopic signature of methane oxidation in a deep south-alpine lake. Geophysical Research Abstracts 12:EGU2010–EGU2788

    Google Scholar 

  • Bowman JS, Deming JW (2014) Alkane hydroxylases gene in psychrophilic genome and the potential for cold active catalysis. BMC Genomics 15:1120. doi:10.1186/1471-2164-15-1120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowman JP (2008) Genomic analysis of psychrophilic prokaryotes. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 265–284

    Google Scholar 

  • Bowman JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA (1997) Shewanella gelidimarina sp. nov. andShewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047

    Article  CAS  PubMed  Google Scholar 

  • Bowman JP, Gosink JJ, McCammon SA, Lewis TE, Nichols DS, Nichols PD, Skeratt JH, Staley JT, McMeekin TA (1998) Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. andColwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6v3). Int J Syst Bacteriol 48:1171–1180

    Article  CAS  Google Scholar 

  • Bozal N, Montes MJ, Tudela E, Jimenez F, Guinea J (2002) Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52:195–205

    Article  CAS  PubMed  Google Scholar 

  • Brakstad OG (2008) Natural and stimulated biodegradation of petroleum in cold marine environments. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 389–428

    Google Scholar 

  • Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium Psychromonas ingrahamii. Microbial Ecol 47:300–304

    Article  CAS  Google Scholar 

  • Brenchley JE (1996) Psychrophilic microorganisms and their cold-active enzymes. J Ind Microbiol Biotechnol 17:432–437

    Article  CAS  Google Scholar 

  • Budiman C, Koga Y, Takano K, Kanaya S (2011) FK506-Binding protein 22 from a psychrophilic bacterium,a cold shock-inducible peptidyl prolyl isomerase with the ability to assist in protein folding. Int J Mol Sci 12:5261–5284. doi:10.3390/ijms1208526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bujacz A, Rutkiewicz-Krotewicz M, Nowakowska-Sapota K, Turkiewicz M (2015) Crystal structure and enzymatic properties of a broad substrate-specificity psychrophilic aminotransferase from the Antarctic soil bacterium Psychrobacter sp. B6. Acta CrystallogD Biol Crystallogr 71:632–645. doi:10.1107/S1399004714028016

    Article  CAS  Google Scholar 

  • Busse H-J, Denner EBM, Buczolits S, Salkinoja-Salonen M, Bennasar A, Kämpfer P (2003) Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 53:1253–1260

    Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  CAS  PubMed  Google Scholar 

  • Carillo S, Casillo A, Pieretti G, Parrilli E, Sannino F, Bayer-Giraldi M, Cosconati S, Novellino E, Ewert M, Deming JW, Lanzetta R, Marino G, Parrilli M, Randazzo A, Tutino ML, Corsaro MM (2015) A unique capsular polysaccharide structure from the psychrophilic marine bacterium Colwellia psychrerythraea 34H that mimics antifreeze (glyco) proteins. J Am Chem Soc. 137:179–189

    Article  CAS  PubMed  Google Scholar 

  • Cartier G, Lorieux F, Allemand F, Dreyfus M, Bizebard T (2010) Cold adaptation in DEAD-box proteins. Biochemistry 49:2636–2646

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R (2006) Cold adapted Archaea. Nat Rev Microbiol 4:331–343

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R, Siddiqui KS (2004) Cold-adapted enzymes. In: Paney A, Webb C, Socol CR, Larroche C (eds) Enzyme technology. Asia Tech Publishers, New Delhi, pp. 615–638

    Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Feng D, Zhang B, Wang Q, Luo Y, Dong X (2015) Proteomic insights into the temperature responses of a cold-adaptive archaeon Methanolobus psychrophilus R15. Extremophiles 19:249–259

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Hu J, Miller EM, Xie W, Cai M, Gross RA (2008a) Candida antarctica lipase B chemically immobilized on epoxy-activated micro- and nanobeads: catalysts for polyester synthesis. Biomacromolecules 9:463–470

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Miller ME, Gross RA (2008b) Immobilization of Candida antarctica lipase B on porous polystyrene resins: protein distribution and activity. In: Polymer biocatalysis and biomaterials II, ACS symposium series, vol 999. American Chemical Society, Washington, DC, pp. 165–177

    Google Scholar 

  • Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol 50:631–642

    CAS  PubMed  Google Scholar 

  • Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at -15 °C. Appl Environ Microbiol 68:6435–6438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2003a) Bacterial recovery from ancient glacial ice. Environ Microbiol 5:433–436

    Article  CAS  PubMed  Google Scholar 

  • Christner BC, Kvitko BH, Reeve JN (2003b) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

    Google Scholar 

  • Christner BC, Mikucki JA, Foreman CM, Denson J, Priscu JC (2005) Glacial ice cores: a model system for developing extraterrestrial decontamination protocols. Icarus 174:572–584

    Article  CAS  Google Scholar 

  • Christner BC, Skidmore ML, Priscu JC, Tranter M, Foreman C (2008) Bacteria in subglacial environments. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 51–71

    Google Scholar 

  • Cipolla A, Delbrassine F, Da Lage JL, Feller G (2012) Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. Biochimie 94:1943–1950

    Article  CAS  PubMed  Google Scholar 

  • Cohen Z (1990) The production potential of eicosapentaenoic acid and arachidonic acid of the red algae Porphyridium cruentum. J Am Oil Chem Soc 67:916–920

    Article  CAS  Google Scholar 

  • Collins T, Hoyoux A, Dutron A, Georis J, Genot B, Dauvrin T, Arnaut F, Gerday C, Feller G (2006) Use of glycoside hydrolase family 8 xylanases in baking. J Cereal Sci 43:79–84

    Article  CAS  Google Scholar 

  • Collins T, Roulling F, Piette F, Marx JC, Feller G, Gerday C, D’Amico S (2008) Fundamentals of cold adapted enzymes. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 211–228

    Google Scholar 

  • Coolen MJL, Orsi WD (2015) The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Front. Microbiol. 6:197. doi:10.3389/fmicb.2015.00197

    Article  PubMed  PubMed Central  Google Scholar 

  • Copeland A, Lucas S, Lapidus A, Barry K, Detter JC, Glavina del Rio T, Hammon N, Israni S, Dalin E, Tice H, Pitluck S, Fredrickson JK, Kolker E, McCuel LA, DiChristina T, Nealson KH, Newman D, Tiedje JM, Zhou J, Romine MF, Culley DE, Serres M, Chertkov O, Brettin T, Bruce D,Han CTapia R, Gilna P, Schmutz J, Larimer F, Land M, Hauser L, Kyrpides N, Mikailova N, Richardson P (2006) Complete sequence of Shewanella frigidimarina NCIMB 400. Submitted (Aug. Sept. 2006). Released 09/14/2006 by the DOE Joint Genome Institute.

    Google Scholar 

  • Corkrey R, McMeekin TA, Bowman JP, Ratkowsky DA, Olley J et al (2014) Protein thermodynamics can be predicted directly from biological growth rates. PLoS ONE 9(5):e96100. doi:10.1371/journal.pone.0096100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cotârleţ M, Negoiţă TG, Bahrim G, Stougaard P (2008) Screening of polar streptomycetes able to produce cold-active hydrolytic enzymes using common and chromogenic substrates. Rom Biotechnol Lett 13:69–80. [special issue, edited for Int Conf Ind Microbiol Appl Biotechnol]

    Google Scholar 

  • Cowan DA, Casanueva A (2007) Stability of ATP in Antarctic mineral soils. Polar Biol 30:1599–1603

    Article  Google Scholar 

  • Cowan DA, Makhalanyane TP, Dennis PG, Hopkins DW (2014) Microbial ecology and biogeochemistry of continental Antarctic soils. Front Microbiol 5:154. doi:10.3389/fmicb.2014.00154

    Article  PubMed  PubMed Central  Google Scholar 

  • Cristóbal HA, Benito J, Lovrich GA, Abate CM (2015) Phylogenentic and enzymatic characterization of psychrophilic and psychrotolerant marine bacteria belong to γ-Proteobacteria group isolated from the sub-Antarctic Beagle Channel. Argentina.Folia Microbiol (Praha). 60:183–198

    Article  PubMed  CAS  Google Scholar 

  • Cristóbal HA, López MA, Kothe E, Abate CM (2011) Diversity of protease-producing marine bacteria from sub-antarctic environments. J Basic Microbiol. 51:590–600

    Article  PubMed  CAS  Google Scholar 

  • Dalmaso GZL, Davis Ferreira, Alane Beatriz Vermelho Marine (2015) Extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13:1925–1965

    Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Garcia V, Brizzio S, Broock MR (2012) Yeasts from glacial ice of Patagonian Andes, Argentina. FEMS Microbiol Ecol 82:540–550

    Article  PubMed  CAS  Google Scholar 

  • de los Rios A, Grube M, LG S, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395

    Google Scholar 

  • De Luca V, Del Prete S, Vullo D, Carginale V, Di Fonzo P, Osman SM, AlOthman Z, Supuran CT, Capasso C (2015) Expression and characterization of a recombinant psychrophilic γ-carbonic anhydrase (NcoCA) identified in the genome of the Antarctic cyanobacteria belonging to the genus Nostoc. J Enzyme Inhib Med Chem 30:1–8

    Article  CAS  Google Scholar 

  • De Maayer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Reports 15:508–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deming JW (2007) Life in ice formations at very cold temperatures. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp. 133–145

    Google Scholar 

  • De Prada P, Loveland-Curtze J, Brenchley JE (1996) Production of two extracellular alkaline phosphatases by a psychrophilic Arthrobacter strain. Appl Environ Microbiol 62:3732–3738

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Santi C, Durante L, Vecchio PD, Tutino ML, Parrilli E, de Pascale D (2012) Thermal stabilization of psychrophilic enzymes: a case study of the cold-active hormone-sensitive lipase from Psychrobacter sp. TA144. Biotechnol Prog 28:946–952

    Article  CAS  PubMed  Google Scholar 

  • Di Prisco G (2007) Lake Vostok and subglacial lakes of Antarctica: do they host life? In: Gerday C, Glansdorff F (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp. 145–154

    Google Scholar 

  • Do H, Lee JH, Kwon MH, Song HE, An JY, Eom SH, Lee SG, Kim HJ (2013) Purification, characterization and preliminary X-ray diffraction analysis of a cold-active lipase (CpsLip) from the psychrophilic bacterium Colwellia psychrerythraea 34H. Acta Crystallogr Sect F Struct Biol Cryst Commun 69(Pt 8):920–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doaa Mahmoud AR, Wafaa Helmy A (2009) Application of cold-active dextranase in dextran degradation and isomaltotriose synthesis by micro-reaction technology. Aust J Basic Appl Sci 3:3808–3817

    Google Scholar 

  • Dong S, Yang J, Zhang XY, Shi M, Song XY, Chen XL, Zhang YZ (2012) Cultivable alginate lyase-excreting bacteria associated with the Arctic brown alga Laminaria. Mar Drugs 10:2481–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Chen Z (2012) Psychrotolerant methanogenic archaea: diversity and cold adaptation mechanisms. Sci China Life Sci. 55(5):415–421. doi:10.1007/s11427-012-4320-0

    Article  CAS  PubMed  Google Scholar 

  • Duplantis BN, Osusky M, Schmerk CL, Ross DR, Bosio CM, Nano FE (2010) Essential genes from Arctic bacteria used to construct stable, temperature-sensitive bacterial vaccines. Proc Natl Acad Sci USA 107:13456–13460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dziewit L, Bartosik D (2014) Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments. Front Microbiol 5:596. doi:10.3389/fmicb.2014.00596

    Article  PubMed  PubMed Central  Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology.Scientifica (Cairo). ArticleID512840, http://dx.doi.org/10.1155/2013/512840

  • Feller G (2010) Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens Matter 22:323101. doi:10.1088/0953-8984/22/32/323101

    Article  PubMed  CAS  Google Scholar 

  • Feller G (2007) Life at low temperatures: is disorder the driving force? Extremophiles 11:211–216

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold-adaptation. Cell Mol Life Sci 53:830–841

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Le Bussy O, Gerday C (1998) Expression of psychrophilic genes in mesophilic hosts: assessment of the folding state of a recombinant a-amylase. Appl Environ Microbiol 64:1163–1165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Powell SM, Wilson R, Bowman JP (2014) Extensive gene acquisition in the extremely psychrophilic bacterial species Psychroflexus torquis and the link to sea-ice ecosystem specialism. Genome Biol Evol 6:133–148

    Google Scholar 

  • Ferrara M, Guerriero G, Cardi M, Esposito S (2013) Purification and biochemical characterisation of a glucose-6-phosphate dehydrogenase from the psychrophilic green alga Koliella antarctica. Extremophiles 17:53–62

    Article  CAS  PubMed  Google Scholar 

  • Finster K (2008) Anaerobic bacteria and archaea in cold ecosystems. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 103–119

    Google Scholar 

  • Flocco CG, Newton C, Gomes M, MacCormack W, Smalla K (2009) Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the maritime Antarctic. Environ Microbiol 11:700–714

    Article  CAS  PubMed  Google Scholar 

  • Foreman CM, Wolf CF, Priscu JC (2004) Impact of episodic warming events on the physical, chemical and biological relationships of lakes in the McMurdo Dry Valley, Antarctica. Aq Geochem 10:239–268

    Google Scholar 

  • Fornbacke M, Clarsund M (2013) Cold-adapted proteases as an emerging class of therapeutics. Infect Dis Ther 2:15–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Frisvad JC (2008a) Cold adapted fungi as source of valuable metabolites. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 381–388

    Google Scholar 

  • Frisvad JC (2008b) Fungi in cold environment. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 137–156

    Google Scholar 

  • Galante YM, Formantici C (2003) Enzyme applications in detergency and in manufacturing industries. Curr Org Chem 7:1399–1422

    Article  CAS  Google Scholar 

  • Ganzert L, Jurgens G, Münster U, Wagner D (2007) Methanogenic communities in permafrost affected soils of the Laptev Sea Coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol 59:476–488

    Article  CAS  PubMed  Google Scholar 

  • García-Echauri SA, Gidekel M, Gutiérrez-Moraga A, Santos L, De León-Rodríguez A (2011) Isolation and phylogenetic classification of culturable psychrophilic prokaryotes from the Collins glacier in the Antarctica. Folia Microbiol (Praha). 56:209–214

    Article  PubMed  CAS  Google Scholar 

  • Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C, Feller G (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic and thermophilic DNA ligases. J Biol Chem 278:37015–37023

    Article  CAS  PubMed  Google Scholar 

  • Gesheva V (2009) Distribution of psychrophilic microorganisms in soils of Terra Nova Bay and Edmonson Point, Victoria Land and their biosynthetic capabilities. Polar Biol 32:1287–1291

    Article  Google Scholar 

  • Ghosh M, Pulicherla KK, Rekha VP, Raja PK, Sambasiva Rao KR (2012) Cold active β-galactosidase from Thalassospira sp. 3SC-21 to use in milk lactose hydrolysis: a novel source from deep waters of Bay-of-Bengal. World J Microbiol Biotechnol 28:2859–2869

    Google Scholar 

  • Gianese G, Argos P, Pascarella S (2001) Structural adaptation of enzymes to low temperatures. Prot Eng 14:141–148

    Article  CAS  Google Scholar 

  • Giaquinto L, Curmi PMG, Siddiqui KS, Poljak A, DeLong E, DasSarma S, Cavicchioli R (2007) Structure and function of cold shock proteins in archaea. J Bacteriol 189:5738–5748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilichinsky DA (2002) Permafrost. In: Bitton G (ed) Encyclopedia of environmental microbiology. John Wiley & Sons, New York, pp. 2367–2385

    Google Scholar 

  • Gilichinsky D, Vishnivetskaya T, Petrova M, Spirina E, Mamkyn V, Rivkina E (2008) Bacteria in Permafrost. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 83–102

    Google Scholar 

  • Ginting EL, Iwasaki S, Maeganeku C, Motoshima H, Watanabe K (2014) Expression, purification, and characterization of cold-adapted inorganic pyrophosphatase from psychrophilic Shewanella sp. AS-11. Prep Biochem Biotechnol 44:480–492. doi:10.1080/10826068.2013.833114

  • Gittel A, Bárta J, Kohoutová I, Schnecker J, Wild B, Čapek P, Kaiser C, Torsvik VL, Richter A, Schleper C, Urich T (2014) Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland. Front Microbiol 5:541. doi:10.3389/fmicb.2014.00541

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  • Goomber S, Kumar A, Singh R, Kaur J (2016) Point mutation Ile137-Met near surface conferred psychrophilic behaviour and improved catalytic efficiency to Bacillus lipase of 1.4 subfamily. Appl Biochem Biotechnol 178:753–765

    Article  CAS  PubMed  Google Scholar 

  • Goto S, Sugiyama J, Iizuka HA (1969) A taxonomical study of Antarctic yeasts. Mycologia 61:748–774

    Article  CAS  PubMed  Google Scholar 

  • Gounot AM (1999) Microbial life in permanently cold soils. In: Margesin R, Schinner F (eds) Coldadapted organisms. Springer, Berlin/Heidelberg/New York, pp. 3–15

    Google Scholar 

  • Gratia E, Weekers F, Margesin R, D’Amico S, Thonart P, Feller G (2009) Selection of a coldadapted bacterium for bioremediation of wastewater at low temperatures. Extremophiles 13:763–768

    Article  CAS  PubMed  Google Scholar 

  • Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8:475–488

    Article  CAS  PubMed  Google Scholar 

  • Grzymski JJ, Carter BJ, DeLong EF, Feldman RA (2006) Comparative genomics of DNA fragments from six Antarctic marine planktonic bacteria. Appl Environ Microbiol 72:1532–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guffogg SP, Thomas-Hall S, Holloway P, Watson K (2004) A novel psychrotolerant member of the hymenomycetous yeasts from Antarctica: Cryptococcus watticus sp. nov. Int J Syst Evol Microbiol 54:275–277

    Article  CAS  PubMed  Google Scholar 

  • Hamamoto T (1993) Psychrophilic microorganisms from deep sea environments. Riken Rev 3:9–10

    Google Scholar 

  • Hasan F, Shah AA, Javed S, Hameed A (2010) Enzymes used in detergents: lipases. African J Biotechnol 9:4836–4844

    CAS  Google Scholar 

  • Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Ann Rev Microbiol 61:237–258

    Article  CAS  Google Scholar 

  • Hao JH, Sun M (2015) Purification and characterization of a cold alkaline protease from a psychrophilic Pseudomonas aeruginosa HY1215. Appl Biochem Biotechnol 175:715–722

    Article  CAS  PubMed  Google Scholar 

  • Helmke E, Weyland H (2004) Psychrophilic versus psychrotolerant bacteria – occurrence and significance in polar and temperate marine habitats. Cell Mol Biol 50:553–561

    CAS  PubMed  Google Scholar 

  • Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41–67

    Article  Google Scholar 

  • Hollibaugh JT, Lovejoy C, Murray AE (2007) Microbiology in polar ocean. Oceanography 20:140–147

    Article  Google Scholar 

  • Hou S, Saw JH, Lee KS, Freitas TA, Belisle C, Kawarabayasi Y, Donachie SP, Pikina A, Galperin MY, Koonin EV, Makarova KS, Omelchenko MV, Sorokin A, Wolf YI, Li QX, Keum YS, Campbell S, Denery J, Aizawa S, Shibata S, Malahoff A, Alam M (2004) Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci USA 101:18036–18041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyoux IJ, Dubois P, Genicot S, Dubail F, Franc JM, Baise Ois E, Feller G, Gerday C (2001) Coldadapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphry DR, George A, Black GW, Cummings SP (2001) Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol 51:1235–1243

    Article  CAS  PubMed  Google Scholar 

  • Huston AL (2008) Biotechnological aspects of cold adapted enzymes. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 347–364

    Google Scholar 

  • Irwin JA (2010) Extremophiles and their application to veterinary medicine. Environ Technol 31:857–869

    Article  CAS  PubMed  Google Scholar 

  • Isaksen GV, Åqvist J, Brandsdal BO (2014) Protein surface softness is the origin of enzyme cold-adaptation of trypsin. PLoS Comput Biol 10(8):e1003813. doi:10.1371/journal.pcbi.1003813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishida Y, Tsuruta H, Tsuneta ST, Uno T, Watanabe K, Aizono I (1998) Characteristics of psychrophilic alkaline phosphatase. Biosci Biotechnol Biochem 62:2246–2250

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Shikata S, Ozaki K, Kawai S, Okamoto K, Inoue S, Takei A, Ohta Y, Satoh T (1989) Alkaline cellulases for laundry detergents production by Bacillus sp. KSM 635 and enzymatic properties. Agric Biol Chem 53:1275–1281

    CAS  Google Scholar 

  • Ivanova EP, Gorshkova NM, Bowman JP, Lysenko AM, Zhukova NV, Sergeev AF, Mikhailov VV, Nicolau DV (2004) Shewanella pacifica sp. nov., a polyunsaturated fatty acid-producing bacterium isolated from sea water. Int J Syst Evol Microbiol 54:1083–1087

    Article  CAS  PubMed  Google Scholar 

  • Jensen DB, Vesth TC, Hallin PF, Pedersen AG, Ussery DW (2012) Bayesian prediction of bacterial growth temperature range based on genome sequences. BMC Genomics 13(Suppl 7):S3. doi: 10.1186/1471-2164-13-S7-S3

  • Jeon CO, Park W, Ghiorse WC, Madsen EL (2004) Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 54:93–97

    Article  CAS  PubMed  Google Scholar 

  • Jónsdóttir LB, Ellertsson BO, Invernizzi G, Magnúsdóttir M, Thorbjarnardóttir SH, Papaleo E, Kristjánsson MM (2014) The role of salt bridges on the temperature adaptation of aqualysin I, a thermostable subtilisin-like proteinase. Biochim Biophys Acta 1844:2174–2181

    Article  PubMed  CAS  Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Ramteke PW, Thomas G, Shrivastava N (2007) Standard review. Cold-active microbial lipases: a versatile tool for industrial applications. Biotechnol Mol Biol Rev 2:39–48

    Google Scholar 

  • Joshi S, Satyanarayana T (2013) Biotechnology of cold-active proteases. Biology (Basel) 2:755–783

    CAS  PubMed Central  Google Scholar 

  • Junge K, Eicken H, Deming JW (2003) Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl Environ Microbiol 69:4282–4284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahlke T, Thorvaldsen S (2012) Molecular characterization of cold adaptation of membrane proteins in the Vibrionaceae core-genome. PLoS ONE 7(12):e51761. doi:10.1371/journal.pone.0051761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaksonen AH, Dopson M, Karnachuk O, Tuovinen OH, Puhakka JA (2008) Biological iron oxidation and sulfate reduction in the treatment of acid mine drainage at low temperatures. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 429–454

    Google Scholar 

  • Kalyuzhnyi SV, Gladchenko M, Epov A (2004) Combined anaerobic-aerobic treatment of landfill leachates under mesophilic, submesophilic and psychrophilic conditions. Water Sci Technol 48:311–318

    Google Scholar 

  • Kamal MZ, Mohammad TAS, Krishnamoorthy G, Rao NM (2012) Role of active site rigidity in activity: MD simulation and fluorescence study on a lipase mutant. PLoS ONE 7(4):e35188. doi:10.1371/journal.pone.0035188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karasova P, Spiwok V, Mala S, Kralova B, Russel NJ (2002) Beta-galactosidase activity in psychrotrophic microorganisms and their potential use in food industry. Czech J Food Sci 20:43–47

    CAS  Google Scholar 

  • Karr EA, Sattley WM, Jung DO, Madigan MT, Achenbach LA (2003) Remarkable diversity of phototrophic purple bacteria in permanently frozen Antarctic lake. Appl Environ Microbiol 69:4910–4914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karr EA, Ng JM, Belchik SM, Sattley WM, Madigan MT, Achenbach LA (2006) Biodiversity of methanogenic and other archaea in the permanently frozen lake Fryxwell, Antarctica. Appl Environ Microbiol 72:1662–1666

    Article  CAS  Google Scholar 

  • Katayama T, Tanaka M, Moriizumi J, Nakamura T, Brouchkov A, Douglas TA, Fukuda M, Tomita F, Asano K (2007) Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Appl Environ Microbiol 73:2360–2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato Y, Sakala RM, Hayashidani H, Kiuchi A, Kaneuchi C, Ogawa M (2000) Lactobacillus algidus sp. nov., a psychrophilic lactic acid bacterium isolated from vacuum-packaged refrigerated beef. Int J Syst Evol Microbiol 50:1143–1149

    Article  CAS  PubMed  Google Scholar 

  • Kawahara H (2008) Cryoprotectant and ice binding proteins. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 229–246

    Google Scholar 

  • Khachane AN, Timmis KN, Martins dos Santos VAP (2005) Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures. Nucleic Acids Res 33:4016–4022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H-R, Kim I-H, Hou CT, K-Il K, Shin B-S (2010) Production of a novel cold-active lipase from Pichia lynferdii Y-7723. J Agric Food Chem 58:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Kitamoto D, Ikegami T, Suzuki GT, Sasaki A, Takeyama Y, Idemoto Y, Koura N, Yanagishita H (2001) Microbial conversion of n-alkanes into glycolipid biosurfactants, annosylerythritol lipids by Pseudozyma (Candida antarctica). Biotechnol Lett 23:1709–1714

    Article  CAS  Google Scholar 

  • Knoblauch C, Sahm K, Jorgensen BB (1999) PsychrophiIic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Bact 49:631–643

    Google Scholar 

  • Kobayashi M, Nagasawa T, Yamada H (1992) Enzymatic synthesis of acrylamide manufacturing process using microorganisms. Trends Biotechnol 10:402–408

    Article  CAS  PubMed  Google Scholar 

  • Kovacic F, Mandrysch A, Poojari C, Strodel B, Jaeger KE (2016) Structural features determining thermal adaptation of esterases. Protein Eng Des Sel 29:65–76

    Article  CAS  PubMed  Google Scholar 

  • Kraft B, Engelen B, Goldhammer T, Lin YS, Cypionka H, Könneke M (2013) Desulfofrigus sp. prevails in sulfate-reducing dilution cultures from sediments of the Benguela upwelling area. FEMS Microbiol Ecol 84:86–97

    Article  CAS  PubMed  Google Scholar 

  • Krembs C, Deming JW (2008) The role of exopolymers in microbial adaptation to sea ice. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 247–286

    Google Scholar 

  • Krishnan KP, Sinha RK, Krishna K, Nair S, Singh SM (2009) Microbially mediated redox transformations of manganese (II) along with some other trace elements: a study from Antarctic lakes Polar Biol 32:1765–1778

    Google Scholar 

  • Kuddus M, Ramteke PW (2012) Recent developments in production and biotechnological applications of cold-active microbial proteases. Crit Rev Microbiol 38:330–338

    Article  CAS  PubMed  Google Scholar 

  • Kuhn E (2012) Toward understanding life under subzero conditions: the significance of exploring psychrophilic “cold-shock” proteins. Astrobiology 12:1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Kulakova L, Galkin A, Kurihara T, Yoshimura T, Esaki N (1999) Cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella strain Ac10: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 65:611-617

    Google Scholar 

  • Kurihara T, Esaki N (2008) Proteomic studies of psychrophilic microrganisms. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 333–346

    Google Scholar 

  • Kwon KK, Lee HS, Yang SH, Kim SJ (2005) Kordiimonas gwangyangensis gen. nov., sp. nov., a marine bacterium isolated from marine sediments that forms a distinct phyletic lineage (Kordiimonadales ord. nov.) in the ‘Alphaproteobacteria’. Int J Syst Evol Microbiol 55:2033–2037

    Article  CAS  PubMed  Google Scholar 

  • Langwaldt JH, Tirola M, Puhakka JA (2008) Microbial adaptation to boreal saturated subsurface: implication in bioremediation of polychlorophenols. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 409–428

    Google Scholar 

  • Larose C, Berger S, Ferrari C, Navarro E, Dommergue A, Schneider D, Vogel TM (2010) Microbial sequences retrieved from environmental samples from seasonal Arctic snow and meltwater from Svalbard, Norway. Extremophiles 14:205–212

    Article  PubMed  Google Scholar 

  • Larouche JR, Bowden WB, Giordano R, Flinn MB, Crump BC (2012) Microbial biogeography of arctic streams: exploring influences of lithology and habitat. Front Microbiol 3:309. doi:10.3389/fmicb.2012.00309

    Article  PubMed  PubMed Central  Google Scholar 

  • Law BA, Goodenough PW (1995) Enzymes in milk and cheese production. In: Tucker GA, Woods LFJ (eds) Enzymes in food processing, 2nd edn. Blackie Academic and Professional, Bishop Briggs/Glasgow, UK, pp. 114–143

    Google Scholar 

  • Lee HK, Ahn MJ, Kwak SH, Song WH, Jeong BC (2003) Purification and characterization of cold active lipase from psychrotrophic Aeromonas sp. LPB 4. J Microbiol 41:22–27

    CAS  Google Scholar 

  • Lee CC, Smith MR, Accinelli R, Williams TG, Wagschal KC, Wong D, Robertson GH (2006) Isolation and characterization of a psychrophilic xylanase enzyme from Flavobacterium sp. Curr Microbiol 52:112–116

    Article  CAS  PubMed  Google Scholar 

  • Lee SG, Koh HY, Han SJ, Park H, Na DC, Kim IC, Lee HK, Yim JH (2010) Expression of recombinant endochitinase from the Antarctic bacterium, Sanguibacter antarcticus KOPRI 21702 in Pichia pastoris by codon optimization. Protein Expr Purif 71:108–114

    Article  CAS  PubMed  Google Scholar 

  • Lees RS (1990) Impact of dietary fats on human health. In: RS L, Karel M (eds) Omega-3 fatty acids in health and disease, Series: Food Science and Technology. Marcel Dekker, New York, pp. 1–38

    Google Scholar 

  • Lettinga G, Rebac S, van Lier J, Zeman G (1999) The potential of sub-mesophilic and/or psychrophilic anaerobic treatment of low strength wastewaters. In: Margesin R, Schinner F (eds) Biotechnological applications of cold adapted organisms. Springer, Berlin/Heidelberg, pp. 221–234

    Google Scholar 

  • Lettinga G, Rebac S, Zeeman G (2001) Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol 19:363–370

    Article  CAS  PubMed  Google Scholar 

  • Liebner S, Wagner D (2007) Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. Environ Microbiol 9:107–117

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Liu H, Zhang J, Zhou Y, Xin Y (2013) Cryobacterium levicorallinum sp. nov., a psychrophilic bacterium isolated from glacier ice. Int J Syst Evol Microbiol 63:2819–2822

    Article  CAS  PubMed  Google Scholar 

  • Lo Giudice A, Bruni V, Michaud L (2007) Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. J Bas Microbiol 47:496–505

    Article  CAS  Google Scholar 

  • Lorv JSH, Rose DR, Glick BR (2014) Bacterial ice crystal controlling proteins. Scientifica Article ID 976895, 20 pages. http://dx.doi.org/10.1155/2014/976895

  • Loveland-Curtze J, Miteva V, Brenchley JE (2009) Herminiimonas glaciei sp. nov., a novel ultramicrobacterum from 3042 m deep Greenland glacial ice. Int J Syst Evol Microbiol 59:1272–1127

    Article  CAS  PubMed  Google Scholar 

  • Loveland-Curtze J, Miteva V, Brenchley J (2010) Novel ultramicrobacterial isolates from a deep Greenland icecore represent a proposed new species Chryseobacterium greenlandense sp. nov. Extremophiles 14:61–69

    Google Scholar 

  • Lutz S, Anesio AM, Edwards A, Benning LG (2015) Microbial diversity on Icelandic glaciers and ice caps. Front Microbiol 6:307. doi:10.3389/fmicb.2015.00307

    PubMed  PubMed Central  Google Scholar 

  • Maccario L, Vogel TM, Larose C (2014) Potential drivers of microbial community structure and function in Arctic spring snow. Front Microbiol 5:413. doi:10.3389/fmicb.2014.00413

    Article  PubMed  PubMed Central  Google Scholar 

  • Madigan MT, Jung DO (2003) Extremophiles. Worldbook encyclopedia, Science Year 2004 Annual, pp 74–89

    Google Scholar 

  • Maiangwa J, Ali MS, Salleh AB, Rahman RN, Shariff FM, Leow TC (2015) Adaptational properties and applications of cold-active lipases from psychrophilic bacteria. Extremophiles 19:235–247

    Article  CAS  PubMed  Google Scholar 

  • Malecki PH, Vorgias CE, Petoukhov MV, Svergun DI, Rypniewski W (2014) Crystal structures of substrate-bound chitinase from the psychrophilic bacterium Moritella marina and its structure in solution. Acta Crystallogr D Biol Crystallogr. 70:676–684

    Article  CAS  PubMed  Google Scholar 

  • Margesin R (2007) Alpine microorganisms: useful tools for low-temperature bioremediation. J Microbiol 45:281–285

    CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F (1999) Biodegradation of organic pollutants at low temperature. In: Margesin R, Schinner F (eds) Biotechnological applications of cold adapted organisms. Springer, Berlin/Heidelberg/New York, pp. 271–290

    Google Scholar 

  • Margesin R, Schinner F (2001) Bioremediation (natural attenuation and biostimulation) of diesel-oil contaminated soil in an alpine glacier skiing area. Appl Environ Microbiol 67:3127–3133

    Google Scholar 

  • Margesin R, Schumann P, Spröer C, Gounot AM (2004) Arthrobacter psychrophenolicus sp. nov.,isolated from an alpine ice cave. Int J Syst Evol Microbiol 54:2067–2072

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Fonteyne PA, Schinner F, Sampaio JP (2007) Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments. Int J Syst Evol Microbiol 57:2179–2184

    Google Scholar 

  • Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J Microbiol 55:63–72

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama H, Hirabayashi T, Kasahara H, Minami H, Hoshino T, Yumoto I (2006) Glaciecola chathamensis sp. nov., a novel marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 56:2883–2886

    Article  CAS  PubMed  Google Scholar 

  • Mattes TE, Alexander AK, Richardson PM, Munk AC, Han CS, Stothard P, Coleman NV (2008) The genome of Polaromonas sp. strain JS666: insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and feature of relevance to biotechnology. Appl Environ Microbiol 74:6405–6416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCammon SA, Innes BH, Bowman JP, Franzmann PD, Dobson SJ, Holloway PE, Skerratt JH, Nichols PD, Rankin LM (1998) Flavobacterium hibernum sp. nov., a lactose-utilizing bacterium from a freshwater Antarctic lake. Int J Syst Bacteriol 4:1405–1412

    Article  Google Scholar 

  • Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EP, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mereghetti P, Riccardi L, Brandsdal BO, Fantucci P, De Gioia L, Papaleo E (2010) Near native-state conformational landscape of psychrophilic and mesophilic enzymes: probing the folding funnel model. J Phys Chem B 114:7609–7619

    Article  CAS  PubMed  Google Scholar 

  • Merlino A, Russo Krauss I, Albino A, Pica A, Vergara A, Masullo M, De Vendittis E, Sica F (2011) Improving protein crystal quality by the without-oil microbatch method: Crystallization and preliminary X-ray diffraction analysis of glutathione synthetase from Pseudoalteromonas haloplanktis. Int J Mol Sci 12:6312–6319

    Google Scholar 

  • Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michaux C, Massant J, Kerff F, Frere J-M, Docquier J-D, Vandenberghe I, Samyn B, Pierrard A, Feller G, Charlier P, Van Beeumen J, Wouters J (2008) Crystal structure of a cold-adapted class C b-lactamase. FEBS J 275:1687–1697

    Article  CAS  PubMed  Google Scholar 

  • Mikhailova G, Likhareva V, Khairullin RF, Lubenets NL, Rumsh LD, Demidyuk IV, Kostrov SV (2006) Psychrophilic trypsin-type protease from Serratia proteamaculans. Biochem Sci 71:563–570

    CAS  Google Scholar 

  • Mikhailova AG, Nekrasov AN, Zinchenko AA, Rakitina TV, Korzhenevsky DA, Lipkin AV, Razguljaeva OA, Ovchinnikova MV, Gorlenko VA, Rumsh LD (2015) Truncated variants of Serratia proteamaculans oligopeptidase B having different activities. Biochemistry (Mosc). 80:1331–1343

    Article  CAS  PubMed  Google Scholar 

  • Milne PJ, Hunt AL, Rostoll K, Van Der Walt JJ, Graz CJM (1998) The biological activity of selected cyclic dipeptides. J Pharm Pharmacol 50:1331–1337

    Article  CAS  PubMed  Google Scholar 

  • Miteva VI (2008) Bacteria in snow and glacier ice. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 31–50

    Google Scholar 

  • Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120,000 year old Greenland glacier ice core. Appl EnvMicrobiol 71:7806–7818

    Article  CAS  Google Scholar 

  • Mock T, Thomas DN (2008) Microalgae from Polar Regions: functional genomics and physiology. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 347–368

    Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Molec Biol Rev 70:222–252

    Article  CAS  Google Scholar 

  • Morita Y, Nakamura T, Hasan Q, Murakami Y, Yokoyama K, Tamiya E (1997) Cold-active enzymes from cold-adapted bacteria. J Am Oil Chem Soc 74:441–444

    Article  CAS  Google Scholar 

  • Mou Z, Ding Y, Wang X, Cai Y (2014) Comparison of protein-water interactions in psychrophilic, mesophilic, and thermophilic Fe-SOD. Protein Pept Lett 21:578–583

    Article  CAS  PubMed  Google Scholar 

  • Moyer CL, Morita RY (2007) Psychrophiles and psychrotrophs. In: Encyclopedia of life sciences. John Wiley & Sons, Ltd., New York. www.els.net.

    Google Scholar 

  • Mukhopadhyay A, Dasgupta AK, Chakrabarti K (2015) Enhanced functionality and stabilization of a cold active laccase using nanotechnology based activation-immobilization. Bioresour Technol. 79:573–584

    Article  CAS  Google Scholar 

  • Murray E, Preston CM, Massana R, Taylor LT, Blakis A, Wu K, Delong EF (1998) Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl Environ Microbiol 64:2585–2595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murygina V, Arinbasarov M, Kalyuzhnyi S (2000) Bioremediation of oil polluted aquatories and soils with novel preparation “Rhoder”. Biodegradation 11:385–389

    Article  CAS  PubMed  Google Scholar 

  • Naganuma T, Hua PN, Okamoto T, Ban S, Imura S, Kanda H (2005) Depth distribution of euryhaline halophilic bacteria in Suribati Ike, a meromictic lake in East Antarctica. Polar Biol 28:964–970

    Article  Google Scholar 

  • Nakagawa T, Ikehata R, Myoda T, Miyaji T, Tomizuka N (2007) Overexpression and functional analysis of cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2. Protein Expr Purif 54:295–299

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Nagaoka T, Taniguchi S, Miyaji T, Tomizuka N (2004) Isolation and characterization of psychrophilic yeasts producing cold-adapted pectinolytic enzymes. Lett Appl Microbiol 38:383–387

    Google Scholar 

  • Napolitano MJ, Shain DH (2004) Four kingdoms on glacier ice: convergent energetic processes boost energy levels as temperatures fall. Proc R Soc Lond B 271:273–276

    Article  Google Scholar 

  • Negoiţă TG, Stefanic G, Irimescu Orzan ME, Palanciuc V, Oprea G (2001a) Chemical and biological characterization of soils from the Antarctic East Coast. Polar Biol 24:565–571

    Article  Google Scholar 

  • Negoiţă TG, Stefanic G, Irimescu Orzan ME, Palanciuc V, Oprea G (2001b) Microbial chemical and enzymatic properties in Spitsbergen soils. Polar Forschung 71:41–46

    Google Scholar 

  • Ni Y, Gu Y, Shi X, Zheng X, Han L, Zhou H, Cheng G (2013) Phylogenetic and physiological diversity of cold-adapted bacteria producing protease from sediments of the bottom layer of the glacier no. 1 in the Tianshan mountains. Wei Sheng Wu Xue Bao 53(2):164–172. [Article in Chinese]

    Google Scholar 

  • Nichols DS, Bowman J, Sanderson C, Nichols CM, Lewis T, McMeekin T, Nichols PD (1999) Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol 10:240–246

    Article  CAS  PubMed  Google Scholar 

  • Nichols DS, Sanderson K, Buia A, van de Kamp J, Holloway P, Bowman JP, Smith M, Mancuso C, Nichols PD, McMeekin T (2002) Bioprospecting and biotechnology in Antarctica. In: Jabour- Green J, HawardM (eds) The Antarctic: past, present and future. Antarctic CRC Research Report #28, Hobart, pp. 85–103

    Google Scholar 

  • Nielsen TB, Ishii M, Kirk O (1999) Lipases A and B from the yeast Candida antarctica. In: Margesin R, Schinner F (eds) Biotechnological applications of cold adapted organisms. Springer, Berlin/Heidelberg/New York, pp. 48–61

    Google Scholar 

  • Niemann H, Elvert M, Wand U, Samarkin VA, Lehmann MF (2010) First Lipid Biomarker evidence for aerobic methane oxidation in the water column of Lake Untersee (East Antarctica). Geophysical Research Abstracts 12:EGU2010–EGU5921

    Google Scholar 

  • Nogi Y (2008) Bacteria in deep sea: psychropiezophiles. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 73–82

    Google Scholar 

  • Nonaka K, Yoon KS, Ogo S (2014) Biochemical characterization of psychrophilic Mn-superoxide dismutase from newly isolated Exiguobacterium sp. OS-77. Extremophiles 18:363–373

    Article  CAS  PubMed  Google Scholar 

  • Nowak M, Olszewski M, Śpibida M, Kur J (2014) Characterisation of single stranded DNA binding proteins from the pychrophilic bacteria Desulfotalea psychrophila Flavobacterium psychrophilum, Psychrobacter arcticus, Psychrobacter cryohalolentis Psychromonas ingrahamii, Psychroreflexus torquans, Photobacterium profundum. BMC Microbiology 14:91. doi:10.1186/1471-2180-14-91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohgiya S, Hoshino T, Okuyama H, Tanaka S, Ishizaki K (1999) Biotechnology of enzymes from cold adapted microorganisms. In: Margesin R, Schinner F (eds) Biotechnological applications of cold adapted organisms. Springer, Berlin/Heidelberg/New York, pp. 17–35

    Google Scholar 

  • Oikawa T, Yamamoto N, Shimoke K, Uesato S, Ikeuki T, Fujioka T (2005) Purification, characterization and overexpression of psychrophilic and thermolabile malate dehydrogenase from a novel Antarctic psychrotolerant Flavobacterium frigidimaris KUC 1. Biosci Biotechnol Biochem 59:2146–2154

    Article  Google Scholar 

  • Olivera NL, Sequeiros C, Nievas ML (2007) Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles 11:517–526

    Article  CAS  PubMed  Google Scholar 

  • Onofri S, Zucconi L, Selbmann L, de Hoog S, de los Rıos A, Ruisi S, Grube M (2007) Fungal associations at the cold edge of life in algae and cyanobacteria in extreme environments. In: Seckbach J (ed) Cellular origins, life in extreme habitats and astrobiology, vol 11. Springer, Dordrecht, The Netherlands, pp 735–757.

    Google Scholar 

  • Oswald VF, Chen WT, Harvilla PB, Magyar JS (2014) Overexpression, purification, and enthalpy of unfolding of ferricytochrome c552 from a psychrophilic microorganism. J Inorg Biochem. doi:10.1016/j.jinorgbio.2013.11.002

    PubMed  Google Scholar 

  • Ovalle AW (1987) In-place leaching of a block carving mine. In: Cooper WC, Lagos GE, Ugarte G (eds) Copper 87, Hydrometallurgy and electrometallurgy of copper, vol 3. Universidad de Chile, Santiago, Chile, pp. 17–37

    Google Scholar 

  • Papaleo E, Parravicini F, Grandori R, De Gioia L, Brocca S (2014) Structural investigation of the cold-adapted acylaminoacyl peptidase from Sporosarcina psychrophila by atomistic simulations and biophysical methods. Biochim Biophys Acta 1844:2203–2213. doi:10.1016/j.bbapap.2014.09.018

    Article  CAS  PubMed  Google Scholar 

  • Papaleo E, Pasi M, Riccardi L, Sambi I, Fantucci P, De Gioia L (2008) Protein flexibility in psychrophilic and mesophilic trypsins. Evidence of evolutionary conservation of protein dynamic in trypsin-like serine-proteases. FEBS Lett 582:1008–1018

    Article  CAS  PubMed  Google Scholar 

  • Park SC, Kim MS, Baik KS, Kim EM, Rhee MS, Seong CN (2008) Chryseobacterium aquifrigidense sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 58:607–611

    Article  CAS  PubMed  Google Scholar 

  • Parrilli E, Papa R, Tutino ML, Sannia G (2010) Engineering of a psychrophilic bacterium for the bioremediation of aromatic compounds. Bioengineered Bugs 3:213–216

    Article  Google Scholar 

  • Parrilli E, Duillio A, Tutino ML (2008) Heterologous protein expression on psychrophilic hosts. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 365–380

    Google Scholar 

  • Parry BR, Shain DH (2011) Manipulations of AMP metabolic genes increase growth rate and cold tolerance in Escherichia coli: Implications for psychrophilic evolution. Mol Biol Evol 28:2139–2145

    Article  CAS  PubMed  Google Scholar 

  • Parvizpour S, Razmara J, Jomah AF, Shamsir MS, Illias RM (2015) Structural prediction of a novel laminarinase from the psychrophilic Glaciozyma antarctica PI12 and its temperature adaptation analysis. J Mol Model. 21:63. doi:10.1007/s00894-015-2617-1

    Article  PubMed  CAS  Google Scholar 

  • Pathan AA, Bhadra B, Begum Z, Shivaji S (2010) Diversity of yeasts from puddles in the vicinity of midre lovénbreen glacier, arctic and bioprospecting for enzymes and fatty acids. Curr Microbiol. 60:307–314

    Article  CAS  PubMed  Google Scholar 

  • Pavlova K, Gargova S, Hristozova T, Tankova Z (2008) Phytase from Antarctic yeast strain Cryptococcus laurentiis AL 27. Folia Microbiol 23:29–34

    Article  Google Scholar 

  • Pernthaler J, Glöckner FO, Unterholzner S, Alfreider A, Psenner R, Amann R (1998) Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl Environ Microbiol 64:4299–4306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perovich DK, Grenfell TC, Light B, Hobbs PV (2002) Seasonal evolution of the albedo of multiyear Arctic sea-ice. J Geophys Res 107(C10):8044. doi:10.1029/2000JC000438

    Article  Google Scholar 

  • Phadtare S, Inouye M (2008) Cold shock proteins. In: Margesin R, Schinner F, Marx JC, Gerday G (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 191–210

    Google Scholar 

  • Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: Production, characterization and biological activities. Mar Drugs 8:1779–1802

    Google Scholar 

  • Prabagaran SR, Manorama R, Delile D, Shivaji S (2007) Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected from Ushuaia, Argentina, sub Antarctica. FEMS Microbiol Ecol 59:342–355.

    Google Scholar 

  • Prasad S, Pratibha MS, Manasa P, Buddhi S, Begum Z, Shivaji S (2013) Diversity of chemotactic heterotrophic bacteria associated with arctic cyanobacteria. Curr Microbiol 66:64–71

    Article  CAS  PubMed  Google Scholar 

  • Price BP (2006) Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol 59:217–231

    Article  CAS  Google Scholar 

  • Prince RC (2005) The microbiology of marine oil spills bioremediation. In: Olivier B, Margot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp. 317–335

    Google Scholar 

  • Priscu JC, Christner BC (2004) Earths icy biosphere. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, DC, pp. 130–145

    Google Scholar 

  • Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP et al (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:2095–2098

    Article  CAS  PubMed  Google Scholar 

  • Purcell AM, Mikucki JA, Achberger AM, Alekhina IA, Barbante C, Christner BC, Ghosh D, Michaud AB, Mitchell AC, Priscu JC, Scherer R, Skidmore ML, Vick-Majors TM, the WISSARD Science (2014) Microbial sulfur transformations in sediments from subglacial Lake Whillans. Front Microbiol. 5:594. doi:10.3389/fmicb.2014.00594

    Article  PubMed  PubMed Central  Google Scholar 

  • Qoura F, Elleuche S, Brueck T, Antranikian G (2014) Purification and characterization of a cold-adapted pullulanase from a psychrophilic bacterial isolate. Extremophiles 18:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Rabus R, Ruepp A, Frickey T, Rattei T, Fartmann B, Stark M, Bauer M, Zibat A, Lombardot T, Amann J, Gellner K, Teeling H, Leuschner WD, Glockner F-O, Lupas AN, Amann R, Klenk H-P (2004) The genome of Desulfotea psychrophila a sulphate reducing bacterium from permanently cold Arctic sediment. Environ Microbiol 6:887–902

    Article  CAS  PubMed  Google Scholar 

  • Raja A, Prabakaran P, Gjalakshmi P (2010) Isolation and screening of antibiotic producing actinomycetes and its nature from Rothang Hill soil against Viridans Streptococcus sp. Res J Microbiol 5:44–49

    Article  Google Scholar 

  • Ramaiah N (1994) Production of certain hydrolytic enzymes by psychrophilic bacteria from the Antarctic krill, zooplankton and seawater. In: Ninth Indian Expedition to Antarctica, Scientific Report, National Institute of Oceanography, Department of Ocean Development, Goa, India Technical Publication, vol 6. Scientific report of Ninth Indian Expedition to Antarctica, New Delhi, pp. 107–114

    Google Scholar 

  • Ramli ANM, Mahadi NM, Rabu A, Murad AM, Bakar FD, Illias RM (2011) Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12. Microb Cell Fact 10:94. doi:10.1186/1475-2859-10-94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramteke PW, Joseph B, Kuddus M (2005) Extracellular lipases from anaerobic microorganism of Antarctic. Ind J Biotechnol 4:293–294

    Google Scholar 

  • Ramya LN, Pulicherla KK (2015) Molecular insights into cold active polygalacturonase enzyme for its potential application in food processing. J Food Sci Technol. 52:5484–5496

    Article  CAS  PubMed  Google Scholar 

  • Rashidah A, Sabrina S, Ainihayati A, Shanmugapriya P, Nazalan N, Razip S (2007) Psychrophilic enzymes from the Antarctic isolates. In: Proceeedings of the international symposium Asian collaboration in IPY (2007–2008) Science Council of Japan, Tokyo 1st March 2007. National Institute of Polar Research, Tokyo, Japan, pp. 116–119

    Google Scholar 

  • Rasol R, Rashidah AR, Nazuha RS, Smykla J, Maznah WO, Alias SA (2014) Psychrotrophic lipase producers from arctic soil and sediment samples. Pol J Microbiol 63:75–82

    CAS  PubMed  Google Scholar 

  • Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61:214–221

    Article  CAS  PubMed  Google Scholar 

  • Rendleman JA Jr (1996) Enzymatic conversion of malto-oligosaccharides and maltodextrin into cyclodextrin at low temperature. Biotechnol Appl Biochem 24:129–137

    CAS  Google Scholar 

  • Riley M, Staley JT, Danchin A, Wang TZ, Brettin TS, Hauser LJ, Land M, Thompson LS (2008) Genomics of an extreme psychrophile, Psychromonas ingrahamii. BMC Genomics 9:210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rippa V, Papa R, Giuliani M, Pezzella C, Parrilli E, Tutino ML, Marino G, Duilio A (2012) Regulated recombinant protein production in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Methods Mol Biol. 824:203–218

    Article  CAS  PubMed  Google Scholar 

  • Rivkina E, Gilichinsky D, Wagener S, Tiedje J, McGrath J (1998) Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments. Geomicrobiol J 15:187–193

    Article  Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues-Diaz F, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC Genomics 9:547

    Article  CAS  Google Scholar 

  • Rogers SO, Shtarkman YM, Koçer ZA, Edgar R, Veerapaneni R, D’Elia T (2013) Ecology of subglacial Lake Vostok (Antarctica), based on metagenomic/metatranscriptomic analyses of accretion ice. Biology 2:629–650

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi G (1999) Biohydrometallurgical processes and temperature. In: Margesin R, Schinner F (eds) Biotechnological applications of cold adapted organisms. Springer, Berlin/Heidelberg/New York, pp. 291–308

    Google Scholar 

  • Rossi M, Buzzini P, Cordisco L, Amaretti A, Sala M, Raimondi S, Ponzoni C, Pagnoni UM, Matteuzzi D (2009) Growth, lipid accumulation and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. FEMS Microbiol Ecol 69:363–337

    Article  CAS  PubMed  Google Scholar 

  • Russell NJ (2008) Membrane components and cold sensing. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 177–190

    Google Scholar 

  • Russell NJ, Cowan DA (2005) Handling of psychrophilic microorganisms. In: Rainey FA, Oren A (eds) Extremophiles. Methods in Microbiology 35:371–393

    Article  Google Scholar 

  • Russell NJ, Nichols DS (1999) Polyunsaturated fatty acids in marine bacteria - a dogma rewritten. Microbiology 145:767–779

    Article  CAS  PubMed  Google Scholar 

  • Rybalka N, Andersen RA, Kostikov I, Mohr KI, Massalski A, Olech M, Friedl T (2008) Testing for endemism, genotypic diversity and species concepts in Antarctic terrestrial microalgae of the Tribonemataceae (Stramenopiles, Xanthophyceae). Environ Microbiol Rep 11:554–565

    Google Scholar 

  • Rysgaard S, Glud RN, Sejr MK, Blicher ME, Stahl HJ (2008) Denitrification activity and oxygen dynamics in Arctic sea ice. Polar Biol 31:527–537

    Article  Google Scholar 

  • Sahay S, Hamid B, Singh P, Ranjan K, Chauhan D, Rana RS, Chaurse VK (2013) Evaluation of pectinolytic activities for oenological uses from psychrotrophic yeasts. Lett Appl Microbiol. 57:115–121

    Article  CAS  PubMed  Google Scholar 

  • Sanchez LA, Gomez FF, Delgado OD (2009) Cold-adapted microorganisms as a source of new antimicrobials. Extremophiles 13:111–120

    Article  CAS  PubMed  Google Scholar 

  • Santos AF, Pires F, Jesus HE, Santos ALS, Peixoto R, Rosado AS, D’Avila-Levy CM, Branquinha MH (2015) Detection of proteases from Sporosarcina aquimarina and Algoriphagus antarcticus isolated from Antarctic soil. Anais da Academia Brasileira de Ciências 87:1678–2690

    Google Scholar 

  • Sarmiento F, Peralta R, Blamey JM (2015) Cold and hot extremozymes: industrial relevance and current trends. Front Bioeng Biotechnol 3:148. doi:10.3389/fbioe.2015.00148

    Article  PubMed  PubMed Central  Google Scholar 

  • Sattley WM, Madigan MT (2006) Isolation, characterization and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Appl Environ Microbiol 72:5562–5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattley WM, Madigan MT (2007) Cold-active acetogenic bacteria from surcial sediments of perennially ice-covered Lake Fryxell, Antarctica. FEMS Microbiol Lett 272:48–54

    Article  CAS  PubMed  Google Scholar 

  • Saunders NFW, Thomas T, Curmi PMG, Mattick JS, Kuczek E, Slade R, Davis J, Franzmann PD, Boone D, Rusterholtz K, Feldman R, Gates C, Bench S, Sowers K, Kadner K, Aerts A, Dehal P, Detter C, Glavina T, Lucas S, Richardson P, Larimer F, Hauser L, Land M, Cavicchioli R (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13:1580–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sælensminde G, Halskau Ř Jr, Jonassen I (2009) Amino acid contacts in proteins adapted to different temperatures: hydrophobic interactions and surface charges play a key role. Extremophiles 13:11–20

    Article  PubMed  CAS  Google Scholar 

  • Säwström C, Laybourn-Parry J, Granéli W, Anesio AM (2007) Heterotrophic bacterial and viraldynamics in Arctic freshwaters: results from a field study and nutrient-temperature manipulation experiments. Polar Biol 30:1407–1415

    Article  Google Scholar 

  • Seo HJ, Bae SS, Lee J-H, Kim S-J (2005) Photobacterium frigidiphilum sp. nov., a psychrophilic, lipolytic bacterium isolated from deep-sea sediments of Edison Seamount. Int J Syst Evol Microbiol 55:1661–1666

    Article  CAS  PubMed  Google Scholar 

  • Sheridan PP, Brenchley JE (2000) Characterization of a salt-tolerant family 42 beta-galactosidase from a psychrophilic Antarctic Planococcus isolate. Appl Environ Microbiol 66:2438–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui KS (2015) Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnol Adv. 33:1912–1922

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui KS, Poljak A, Guilhaus M, De Francisci D, Curmi PM, Feller G, D’Amico S, Gerday C, Uversky VN, Cavicchioli R (2006) Role of lysine versus arginine in enzyme cold-adaptation:modifying lysine to homo-arginine stabilizes the cold-adapted alpha-amylase from Pseudoalteromonas haloplanktis. Proteins 1:486–501

    Article  CAS  Google Scholar 

  • Siglioccolo A, Gerace R, Pascarella S (2010) “Cold spots” in protein cold adaptation: Insights from normalized atomic displacement parameters (B′-factors). Biophys Chem 153:104–114

    Article  CAS  PubMed  Google Scholar 

  • Signori CN, Thomas F, Enrich-Prast A, Pollery RCG, Sievert SM (2014) Microbial diversity and community structure across environmental gradients in Bransfield Strait Western Antarctic Peninsula. Front Microbiol 5:647. doi:10.3389/fmicb.2014.00647

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh L, Ramana Venkata K (1998) Isolation and characterization of psychrotrophic Antarctic bacteria from blue-green algal mats and their hydrolytic enzymes. Scientific report; Fourteenth Indian expedition to Antarctica. Vol. 12:199–206

    Google Scholar 

  • Singh SM, Puja G, Bhat DJ (2006) Psychrophilic fungi from Schirmacher Oasis, East Antarctica. Curr Sci 90:1388–1392

    Google Scholar 

  • Singh P, Singh SM, Roy U (2015) Taxonomic characterization and the bio-potential of bacteria isolated from glacier ice cores in the high Arctic. J Basic Microbiol. 56:275–285. doi:10.1002/jobm.201500298

    Article  PubMed  Google Scholar 

  • Singh P, Singh SM, Tsuji M, Prasad GS, Hoshino T (2014) Rhodotorula svalbardensis sp. nov., a novel yeast species isolated from cryoconite holes of Ny-Alesund, Arctic. Cryobiology 68:122–128

    Article  CAS  PubMed  Google Scholar 

  • Sizova M, Panikov N (2007) Polaromonas hydrogenivorans sp. nov., a psychrotolerant hydrogenoxidizing bacterium from Alaskan soil. Int J Syst Evol Microbiol 57:616–619

    Article  CAS  PubMed  Google Scholar 

  • Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a high arctic glacier. Appl Environ Microbiol 66:3214–3220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DW, Emde KME (1999) Effectiveness of wastewater lagoons in cold regions. In: Margesin R, Schinner F (eds) Biotechnological applications of cold adapted organisms. Springer, Berlin/Heidelberg/New York, pp. 235–256

    Google Scholar 

  • Somkutl GA, Holsinger VH (1997) Microbial technologies in the production of low-lactose dairy foods. Food Sci Technol Int J 3:163–169

    Article  Google Scholar 

  • Sonan GK, Receveur-Brechot V, Duez C, Aghari N, Czjzek M, Haser R, Gerday C (2007) The linker region plays a key role in the adaptation to cold of the cellulase from an Antarctic bacterium. Biochem J 407:293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spring S, Merkhoffer B, Weiss N, Kroppenstedt RM, Hippe H, Stackebrandt E (2003) Characterization of novel psychrophilic clostridia from an Antarctic microbial mat: description of Clostridium frigoris sp. nov., Clostridium lacusfryxellense sp. nov., Clostridium bowmanii sp. nov. andClostridium psychrophilum sp. nov. and reclassification of Clostridium laramiense as Clostridium estertheticum subsp. laramiense subsp. nov. Int J Syst Evol Microbiol 53:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Stefanic G (1994) Biological definition, quantifying method and agricultural interpretation of soil fertility. Rom Agric Res 2:107–116

    Google Scholar 

  • Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523

    Article  CAS  PubMed  Google Scholar 

  • Stibal M, Gözdereliler E, Cameron KA, Box JE, Stevens IT, Gokul JK, Schostag M, Zarsky JD, Edwards A, Irvine-Fynn TDL, Jacobsen CS (2015) Microbial abundance in surface ice on the Greenland Ice Sheet. Front Microbiol 6:225. doi:10.3389/fmicb.2015.00225

    Article  PubMed  PubMed Central  Google Scholar 

  • Struvay C, Feller G (2012) Optimization to low temperature activity inpsychrophilic enzymes. Int J Mol Sci 13:11643–11665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundareswaran VR, Singh AK, Dube S, Shivaji S (2010) Aspartate aminotransferase is involved in cold adaptation in psychrophilic Pseudomonas syringae. Arch Microbiol. 192:663–672

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Nakayama T, Kurihara T, Nishino T, Esaki N (2001) Cold active lipolytic activity of psychrotrophic Acinetobacter sp. strain no. 6. J Biosci Bioeng 92:144–148

    Article  CAS  PubMed  Google Scholar 

  • Sweet CR, Watson RE, Landis CA, Smith JP (2015) Temperature-dependence of lipid A acyl structure in Psychrobacter cryohalolentis and arctic isolates ofColwellia hornerae and Colwellia piezophila. Mar Drugs 13:4701–4720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima T, Hamada M, Nakashimada Y, Kato J (2015) Efficient aspartic acid production by a psychrophile-based simple biocatalyst. J Ind Microbiol Biotechnol 42:1319–1324

    Article  CAS  PubMed  Google Scholar 

  • Tajima T, Fuki K, Kataoka N, Kudou D, Nakashimada Y, Kato J (2013) Construction of a simple biocatalyst using psychrophilic bacterial cells and its application for efficient 3-hydroxypropionaldehyde production from glycerol. AMB Express 3:69 http://www.amb-express.com/content/3/1/69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takeuchi N, Kohshima S (2004) A snow algal community on Tyndall glacier in the Southern Patagonia Icefield, Chile. Arct Antarct Alp Res 36:92–99

    Article  Google Scholar 

  • Tamaki H, Hanada S, Kamagata Y, Nakamura K, Nomura N, Nakano K, Matsumura M (2003) Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Syst Evol Microbiol 53:519–526

    Article  CAS  PubMed  Google Scholar 

  • Tang MA, Motoshima H, Watanabe K (2014) Cold adaptation: structural and functional characterizations of psychrophilic and mesophilic acetate kinase. Protein J 33:313–322

    Article  CAS  PubMed  Google Scholar 

  • Tashyrev OB (2009) The complex researches of structure and function of Antarctic terrestrial microbial communities. Ukr Antarctic J 8:343–357

    Google Scholar 

  • Tebo BM, Davis RE, Anitori RP, Connell LB, Schiffman P, Staudigel H (2015) Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Front Microbiol 6:179. doi:10.3389/fmicb.2015.00179

  • Thomas-Hall S, Watson K (2002) Cryptococcus nyarrowii sp. nov., a basidiomycetous yeast from Antarctica. Int J Syst Evol Microbiol 52:1033–1038

    CAS  PubMed  Google Scholar 

  • Thomas-Hall S, Hall R, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and the Italian Alps – description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59

    Google Scholar 

  • Tian F, Yu Y, Chen B, Li H, Yao YF, Guo XK (2009) Bacterial, archaeal and eukaryotic diversity in Arctic sediment as revealed by 16S rRNA and 18S rRNA gene clone libraries analysis. Polar Biol 32:93–103

    Article  Google Scholar 

  • Tkaczuk KL, Buinicki JM, Bialkowska A, Bielecki S, Turkievicz M, Cieslinski H, Kur J (2005) Molecular modelling of a psychrophilic beta-galactosidase. Biocat Biotransf 23:201–209

    Article  CAS  Google Scholar 

  • Tuorto SJ, Darias P, McGuinness LR, Panikov N, Zhang T, Haggblom MM, Kerkhof LJ (2014) Bacterial genome replication at subzero temperatures in permafrost. The ISME J 8:139–149

    Article  CAS  PubMed  Google Scholar 

  • Turkiewicz M, Pazgier M, Donachie SP, Kalinowska H (2005) Invertase and glucosidase production by the endemic Antarctic marine yeast Leucosporidium antarcticum. Pol Polar Res 26:125–136.

    Google Scholar 

  • Tutino ML, Duilio A, Parrilli R, Remaut E, Sannia G, Marino G (2001) A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 5:257–264

    Article  CAS  PubMed  Google Scholar 

  • Vishniac HS, Kurtzman CP (1992) Cryptococcus antarcticus sp. nov., and Cryptococcus albidosimilis sp. nov., basidioblastomycetes from Antarctic soils. Int J Syst Bact 42:547–553

    Article  Google Scholar 

  • Vorobyova E, Soina V, Gorlenko M, Minkovskaya M, Zalinova N, Mamukelashvili A, Gilichinsky D, Rivkina E, Vishnivetskaya T (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:277–290

    Article  CAS  Google Scholar 

  • Voytek MA, Priscu JC, Ward BB (1999) The diversity and abundance of ammonia oxidizing bacteria in lake of the McMurdo Dry Valley, Antarctica. Hydrobiologia 401:113–130

    Article  CAS  Google Scholar 

  • Wagner-Döbler I, Rheims H, Felske A, El-Ghezal A, Flade-Schroder D, Laatsch H, Lang S, Pukall R, Tindall BJ (2004) Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. Int J Syst Evol Microbiol 54:1177–1184

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Zhang C, Hou Y, Lin X, Shen J, Guan X (2013) Optimization of cold-active lipase production from psychrophilic bacterium Moritella sp. 2-5-10-1 by statistical experimental methods. Biosci Biotechnol Biochem 77:17–21

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhao Y, Tan H, Chi N, Zhang Q, Du Y, Yin H (2014) Characterisation of a chitinase from Pseudoalteromonas sp. DL-6, a marine psychrophilic bacterium. Int J Biol Macromol. 70:455–462

    Article  CAS  PubMed  Google Scholar 

  • Wartiainen I, Hestnes AG, McDonald IR, Svenning Mette M (2006) Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (786oN). Int J Syst Microbiol 56:541–547

    Article  CAS  Google Scholar 

  • Wells LE (2008) Cold active viruses. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 157–176

    Google Scholar 

  • Wharton RA Jr, McKay CP, Simmons GM Jr, Parker CB (1985) Cryoconite holes on glaciers. Bioscience 35:499–503

    Article  PubMed  Google Scholar 

  • Whyte LG, Hawari J, Zhou E, Bourbonnere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus. Appl Environ Microbiol 64:2578–2584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wi AR, Jeon SJ, Kim S, Park HJ, Kim D, Han SJ, Yim JH, Kim HW.(2014) Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus. Biotechnol Lett 36:1295–1302

    Google Scholar 

  • Wierzchos J, de los Rios A, LG S, Ascaso C (2004) Viability of endolithic microorganisms in rocks from the McMurdo Dry Valleys of Antarctica established by confocal and fluorescence microscopy. J Microsc Oxford 216:57–61

    Article  CAS  Google Scholar 

  • Wilhelm RC, Niederberger TD, Greer C, Whyte LG (2011) Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can J Microbiol 57:303–315

    Article  CAS  PubMed  Google Scholar 

  • Wilmes B, Kock H, Glagla S, Albrecht D, Voigt B, Markert S, Gardebrecht A, Bode R, Danchin A, Feller G, Hecker M, Schweder T (2011) Cytoplasmic and periplasmic proteomic signatures of exponentially growing cells of the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 77:1276–1283

    Article  CAS  PubMed  Google Scholar 

  • Woo JH, Hwang YO, Kang SG, Lee HS, Cho JC, Kim SJ (2007) Cloning and characterization of three epoxide hydrolases from a marine bacterium, Erythrobacter litoralis HTCC2594. Appl Microbiol Biotechnol 76:365–375

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Wang D, Shi X, Zheng X, Zhou H, Liu Y, Ni Y (2011) Selective isolation and diversity of cold-adapted lipase-producing strains from permafrost soil at the terminus of a glacier in the Tianshan Mountains. Wei Sheng Wu Xue Bao 51:233–240

    CAS  PubMed  Google Scholar 

  • Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham W-R, Lunsdorf H, Timmis KN, Golyshin PN (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785

    Article  CAS  PubMed  Google Scholar 

  • Yan BQ, Chen XL, Hou XY, He H, Zhou BC, Zhang YZ (2009) Molecular analysis of the gene encoding a cold-adapted halophilic subtilase from deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913: cloning, expression, characterization and function analysis of the C-terminal PPC domains. Extremophiles 13:725–733

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Wang F, Hao J, Zhang K, Yuan N, Sun M (2010) Identification of a proteolytic bacterium, HW08, and characterization of its extracellular cold-active metalloprotease Ps5. Biosci Biotechnol Biochem 74:1220–1225

    Google Scholar 

  • Yang SH, Lee JH, Ryu JS, Kato C, Kim SJ (2007) Shewanella donghaensis sp. nov., a psychrotrophic, piezosensitive bacterium producing high levels of polyunsaturated fatty acid, isolated from deep sea sediments. Int J Syst Evol Microbiol 57:208–212

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Li HR, Zeng YX, Chen B (2011) Bacterial diversity and bioprospecting for cold-active hydrolytic enzymes from culturable bacteria associated with sediment from Nella Fjord, EasternAntarctica. Mar Drugs 9:184–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z-C, Tang B-L, Zhao D-L, Pang X, Qin Q-L, Zhou B-Cheng et al (2015) Development of a cold-adapted Pseudoalteromonas expression system for the Pseudoalteromonas proteins intractable for the Escherichia coli system. PLoS ONE 10(9):e0137384. doi:10.1371/journal. pone.0137384.

  • Yu D, Margesin R (2014) Partial characterization of a crude cold-active lipase from Rhodococcus cercidiphylli BZ22. Folia Microbiol (Praha) 59:439–445

    Article  CAS  Google Scholar 

  • Yu Y, Li H, Zeng Y, Chen B (2009) Extracellular enzymes of cold-adapted bacteria from Arctic sea ice, Canada Basin. Polar Biol 32:1539–1547

    Article  Google Scholar 

  • Yumoto I, Nakamura A, Iwata H, Kojima K, Kusumoto K, Nodasaka Y, Matsuyama H (2002) Dietzia psychralkaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90

    Google Scholar 

  • Yumoto I, Hirota K, Sogabe Y, Nodasaka Y, Yokota Y, Hoshino T (2003) Psychrobacter okhotskensis sp. nov., a lipase-producing facultative psychrophile isolated from the coast of the Okhotsk Sea. Int J Syst Evol Microbiol 53:1985–1989

    Article  CAS  PubMed  Google Scholar 

  • Zachariassen KE, Lundheim R (1999) Application of antifreeze proteins. In: Margesin R, Schinner F (eds) Biotechnological applications of cold adapted organisms. Springer, Berlin/Heidelberg, pp. 319–332

    Google Scholar 

  • Zakaria MM, Ashiuchi M, Yamamoto S, Yagi T (1998) Optimization for beta-mannanase production of a psychrophilic bacterium, Flavobacterium sp. Biosci Biotechnol Biochem 62:655–660

    Article  CAS  PubMed  Google Scholar 

  • Zakhia F, Jungblut AD, Taton A, Vincent WF, Wilmotte A (2008) Cyanobacteria in cold ecosystems. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp. 121–135

    Google Scholar 

  • Zhang S-C, Sun M, Li T, Wang Q-H, Hao J-H et al (2011) Structure analysis of a new psychrophilic marine protease. PLoS ONE 6(11):e26939. doi:10.1371/ journal.pone.0026939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. D.S. Nichols and his coworkers for the kind permission to integrate their data on enzymes of psychrophilic microorganisms in the table of this chapter. This work benefitted from the research funded by the Executive Unit for Funding of High Level Education and of Universities Scientific Research, Romania (U.E.F.I.S.C.S.U.) in the frame of contract nr.1, Europolar 2009–2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiu Fendrihan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fendrihan, S., Negoiţă, T.G. (2017). Psychrophilic Microorganisms as Important Source for Biotechnological Processes. In: Stan-Lotter, H., Fendrihan, S. (eds) Adaption of Microbial Life to Environmental Extremes. Springer, Cham. https://doi.org/10.1007/978-3-319-48327-6_7

Download citation

Publish with us

Policies and ethics