Skip to main content

Extremophiles in Antarctica: Life at Low Temperatures

  • Chapter
  • First Online:
Adaption of Microbial Life to Environmental Extremes

Abstract

In this chapter we will explore the different adaptations of extremophiles to life in the extreme cold. We generally forget that the Earth is mostly cold and that most ecosystems are exposed to temperatures that are permanently below 5 °C. Such low mean temperatures mainly arise from the fact that ~70 % of the Earth’s surface is covered by oceans that have a constant temperature of 4–5 °C (below a depth of 1,000 m), irrespective of the latitude. The polar regions account for another 15 % of the surface, to which the glacier and alpine regions must also be added. Here, we will take an illustrated look in particular at the Antarctic environment, as it is by far the coldest environment on Earth – the lowest temperature on the surface of the Earth (−89.2 °C) was recorded at the Russian Vostok Station, at the centre of the East Antarctic ice sheet. Antarctica is a place where organisms are often subjected to combined stresses including desiccation, limited nutrient availability, high salinity, adverse solar radiation and low biochemical activity. The incredibly harsh environment of the Antarctic continent precludes life in most of its forms, and the microorganisms are therefore dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abyzov SS, Mitskevich IN, Poglazova MN, Barkov IN, Lipenkov VY, Bobin NE, Koudryashov BB, Pashkevich VM, Ivanov MV (2001) Microflora in the basal strata at Antarctic ice core above the Vostok lake. Adv Space Res 28:701–706

    Article  CAS  PubMed  Google Scholar 

  • Aguirre de Cárcer D, López-Bueno A, Pearce DA, Alcamí A (2015) Biodiversity and distribution of polar freshwater DNA viruses. Sci Adv 1(5):e1400127. doi:10.1126/sciadv.1400127 eCollection 2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ah Tow L, Cowan DA (2005) Dissemination and survival of non-indigenous bacterial genomes in pristine Antarctic environments. Extremophiles 9:385–389

    Article  PubMed  Google Scholar 

  • Alam SI, Singh L, Dube S, Reddy GS, Shivaji S (2003) Psychrophilic Planococcus maitriensis sp. nov. from Antarctica. Syst Appl Microbiol 26:505–510

    Article  CAS  PubMed  Google Scholar 

  • Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, Chong KWY, Pilak O, Chew HH, De Maere MZ, Ting L, Katrib M, Ng C, Sowers KR, Galperin MY, Anderson IJ, Ivanova N, Dalin E, Martinez M, Lapidus A, Hauser L, Land M, Thomas T, Cavicchioli R (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold-adaptation. ISME J 3:1012–1035

    Article  CAS  PubMed  Google Scholar 

  • Amos GC, Borsetto C, Laskaris P, Krsek M, Berry AE, Newsham KK, Calvo-Bado L, Pearce DA, Vallin C, Wellington EM (2015) Designing and implementing an assay for the detection of rare and divergent NRPS and PKS clones in European, Antarctic and Cuban soils. PLoS One 10:e0138327. doi:10.1371/journal.pone.0138327 eCollection 2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13:677–690. doi:10.1038/nrmicro3522

    Article  CAS  PubMed  Google Scholar 

  • Bottos EM, Woo AC, Zawar-Reza P, Pointing SB, Cary SC (2014) Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica. Microb Ecol 67:120–128

    Article  PubMed  Google Scholar 

  • Bowman JP, McCuaig RD (2003) Diversity and biogeography of prokaryotes dwelling in Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brizzio S, Turchetti B, de García V, Libkind D, Buzzini P, van Broock M (2007) Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525

    Article  CAS  PubMed  Google Scholar 

  • Brock TD (1961) Milestones in microbiology. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Bulat SA, Alekhina IA, Krylenkov VA, Lukin VV (2002) Molecular biological studies of microbiota in subglacial lake Vostok (the Antarctic) (in Russian). Adv Curr Biol 122:211–221

    CAS  Google Scholar 

  • Bulat SA, Alekhina IA, Lipenkov VY, VV L, Marie D, Petit JR (2009) Cellular concentrations of microorganisms in glacial and lake ice of the Vostok ice core, East Antarctica. Microbiology 78:808–810

    Article  CAS  Google Scholar 

  • Busse H-J, Denner EBM, Buczolits S, Salkinoja-Salonen M, Bennasar A, Kämpfer P (2003) Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 53:1253–1260

    Article  CAS  PubMed  Google Scholar 

  • Cameron KA, Hodson AJ, Osborn AM (2012) Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiol Ecol 82:254–267. doi:10.1111/j.1574-6941.2011.01277.x

    Article  CAS  PubMed  Google Scholar 

  • Campanaro S, Williams TJ, De Francisci D, Treu L, Lauro FM, Cavicchioli R (2010) Temperature-dependent global gene expression in the Antarctic archaeon. Methanococcoides burtonii. Environ Microbiol (online Nov 8: doi:10.1111/j.1462-2920.2010.02367.x)

  • Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R (2002) Extremophiles and the search for extraterrestrial life. Astrobiology 2:281–292

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay MK (2000) Cold adaptation of Antarctic microorganisms—possible involvement of viable but non culturable state. Polar Biol 23:223–224

    Article  Google Scholar 

  • Che S, Song L, Song W, Yang M, Liu G, Lin X (2013) Complete genome sequence of Antarctic bacterium Psychrobacter sp. strain G.Genome Announc 1(5).pii: e00725-e00713. doi: 10.1128/genomeA.00725-13

  • Chong CW, Dunn MJ, Convey P, Annie Tan GY, Wong RCS, Tan IKP (2009) Environmental influences on bacterial diversity of soils on Signy Island, maritime Antarctic. Polar Biol 32:1571–1582

    Article  Google Scholar 

  • Chong CW, Pearce DA, Convey P, Tan GYA, Wong RCS, Tan IKP (2010) High levels of spatial heterogeneity in the biodiversity of soil prokaryotes on Signy Island, Antarctica. Soil Biol Biogeochem 42:601–610

    Article  CAS  Google Scholar 

  • Chong CW, Pearce DA, Convey P (2015) Emerging spatial patterns in Antarctic prokaryotes. Front Microbiol 6:1058. doi:10.3389/fmicb.2015.01058 eCollection 2015

    Article  PubMed  PubMed Central  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485

    Article  Google Scholar 

  • Christner BC, Kvitko BH, Reeve JN (2003) Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

    CAS  PubMed  Google Scholar 

  • Christner BC, Royston-Bishop G, Foreman CM, Arnold BR, Tranter M, Welch KA, Lyons WB, Tsapin AI, Studinger M, Priscu JC (2006) Limnological conditions in subglacial Lake Vostok, Antarctica. Limnol Oceanogr 51:2485–2501

    Article  Google Scholar 

  • Christner BC, Priscu JC, Achberger AM, Barbante C, Carter SP, Christianson K, Michaud AB, Mikucki JA, Mitchell AC, Skidmore ML, Vick-Majors TJ, WISSARDScience Team (2014) A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512:310–313. doi:10.1038/nature13667

    Article  CAS  PubMed  Google Scholar 

  • Clocksin KM, Jung DO, Madigan MT (2007) Cold-active chemoorganotrophic bacteria from permanently ice-covered Lake Hoare, McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 73:3077–3083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockell CS, McKay CP, Omelon C (2002) Polar endoliths – an anticorrelation of climatic extremes and microbial biodiversity. Int J Astrobiol 1:305–310

    Article  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danks HV (2002) Modification of adverse conditions by insects. Oikos 99:10–24

    Article  Google Scholar 

  • Deegenaars ML, Watson K (1998) Heat shock response in psychrophilic and psychrotrophic yeast from Antarctica. Extremophiles 2:41–49

    Article  CAS  PubMed  Google Scholar 

  • de Pascale D, Cusano AM, Autore F, Parrilli E, di Prisco G, Marino G, Tutino ML (2008) The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles 12:311–323

    Article  CAS  PubMed  Google Scholar 

  • Devos N, Ingouff M, Loppes R, Matagne RF (1998) RUBISCO adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae. J Phycol 34:655–660

    Article  CAS  Google Scholar 

  • Dickinson I, Goodall-Copestake W, Thorne MAS, Schlitt T, Ávila-Jiménez ML, Pearce DA (2016) Extremophiles in an Antarctic marine ecosystem. Microorganisms 4(1):8. doi:10.3390/microorganisms4010008

    Article  PubMed Central  Google Scholar 

  • Dieser M, Greenwood M, Foreman CM (2010) Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. AAAR 42:396–405

    Article  Google Scholar 

  • Donachie SP, Bowman JP, Alam M (2004) Psychroflexus tropicus sp. nov., an obligately halophilic Cytophaga–Flavobacterium–Bacteroides group bacterium from an Hawaiian hypersaline lake. Int J Syst Evol Microbiol 54:935–940

    Article  CAS  PubMed  Google Scholar 

  • Dsouza M, Taylor MW, Turner SJ, Aislabie J (2014) Genome-based comparative analyses of Antarctic and temperate species of Paenibacillus. PLoS One 9:e108009. doi:10.1371/journal.pone.0108009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dsouza M, Taylor MW, Turner SJ, Aislabie J (2015) Genomic and phenotypic insights into the ecology of Arthrobacter from Antarctic soils. BMC Genomics 16:36. doi:10.1186/s12864-015-1220-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Duarte CM, Agustí S, Vaqué D, Agawin NSR, Felipe J, Casamayor EO, Gasol JM (2005) Experimental test of bacteria–phytoplankton coupling in the Southern Ocean. Limnol Oceanogr 50:1844–1854

    Article  CAS  Google Scholar 

  • Edwards A, Anesio AM, Rassner SM, Sattler B, Hubbard B, Perkins WT, Young M, Griffith GW (2011) Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J 5:150–160. doi:10.1038/ismej.2010.100

    Article  PubMed  Google Scholar 

  • Feller G, Zekhnini Z, Lamotte-Brasseur J, Gerday C (1997) Enzymes from cold-adapted microorganisms. The class C β-lactamase from the Antarctic psychrophile Psychrobacter immobilis A5. Eur J Biochem 244:186–191

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. Bioscience 54:777–784

    Article  Google Scholar 

  • Ferrer M, Golyshina O, Beloqui A, Golyshin PN (2007) Mining enzymes from extreme environments. Curr Opin Microbiol 10:207–214

    Article  CAS  PubMed  Google Scholar 

  • Fields PA (2001) Protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol A 129:417–431

    Article  CAS  Google Scholar 

  • Finlay BJ, Clarke KJ (1999) Ubiquitous dispersal of microbial species. Nature 400:828

    Article  CAS  Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    Article  CAS  PubMed  Google Scholar 

  • Finlay BJ, Esteban GF, Olmo JL, Tyler PA (1999) Global distribution of free-living microbial species. Ecography 22:138–144

    Article  Google Scholar 

  • Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, De Macario EC, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47:1068–1072

    Article  CAS  PubMed  Google Scholar 

  • Ghiglione JF, Galand PE, Pommier T, Pedrós-Alió C, Maas EW, Bakker K, Bertilson S, Kirchmanj DL, Lovejoy C, Yager PL, Murray AE (2012) Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci U S A 109:17633–17638. doi:10.1073/pnas.1208160109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaquinto L, Curmi PMG, Siddiqui KS, Poljak A, DeLong E, DasSarma S, Cavicchioli R (2007) The structure and function of cold shock proteins in archaea. J Bacteriol 189:5738–5748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilichinsky D, Wagener S, Vishnevetskaya T (1995) Permafrost microbiology. Permafrost Periglacial Processes 6:281–291

    Article  Google Scholar 

  • Gocheva YG, Tosi S, Krumova ET, Slokoska LS, Miteva JG, Vassilev SV, Angelova MB (2009) Temperature downshift induces antioxidant response in fungi isolated from Antarctica. Extremophiles 13:273–281

    Article  PubMed  Google Scholar 

  • Herbert RA (1986) The ecology and physiology of psychrophilic microorganisms. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. The Society for General Microbiology. Academic Press, London, pp 1–24

    Google Scholar 

  • Herbert RA (1989) Microbial growth at low temperature. In: Gould GW (ed) Mechanisms of action of food preservation procedures. Elsevier Applied Science, London, pp. 71–96

    Google Scholar 

  • Hirsch P, Gallikowski CA, Siebert J, Peissl K, Kroppenstedt R, Schumann P, Stackebrandt E, Anderson R (2004a) Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and drought-tolerating, UV resistant bacteria from continental Antarctica. Syst Appl Microbiol 27:636–645

    Article  CAS  PubMed  Google Scholar 

  • Hirsch P, Mevs U, Kroppenstedt RM, Schumann P, Stackebrandt E (2004b) Cryptoendolithic actinomycetes from Antarctic sandstone rock samples: Micromonospora endolithica sp. nov. and two isolates related to Micromonospora coerulea Jensen 1932. Syst Appl Microbiol 27:166–174

    Article  CAS  PubMed  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York

    Google Scholar 

  • Hodson A, Brock B, Pearce DA, Laybourn-Parry J, Tranter M (2015) Cryospheric ecosystems: a synthesis of snowpack and glacial research. Environ Res Lett 10:110201. doi:10.1088/1748-9326/10/11/110201

    Article  Google Scholar 

  • Hua MX, Chi Z, Liu GL, Buzdar MA, Chi ZM (2010) Production of a novel and cold-active killer toxin by Mrakia frigida 2E00797 isolated from sea sediment in Antarctica. Extremophiles 14:515–521

    Article  CAS  PubMed  Google Scholar 

  • Hughes KA, McCartney HA, Lachlan-Cope TA, Pearce DA (2004) A preliminary study of airborne biodiversity over peninsular Antarctica. Cell Mol Biol 50:537–542

    CAS  PubMed  Google Scholar 

  • Hughes J, Smith HG (1989) Temperature relations of Heteromita globosa Stein in Signy Island fellfields. In: Heywood RB (ed) University Research in Antarctica. Proceedings of British Antarctic Survey Antarctic Special Topic Award Scheme Symposium, 9-10 November 1988. British Antarctic Survey, Natural Environment Research Council, Cambridge, pp. 117–122

    Google Scholar 

  • Jamieson RE, Rogers AD, Billett D, Smale DA, Pearce DA (2012) Patterns of bacterioplankton biodiversity in the surface waters of the Scotia Arc, Southern Ocean. FEMS Microbiol Ecol 80:452–468. doi:10.1111/j.1574-6941.2012.01313.x

    Article  CAS  PubMed  Google Scholar 

  • Jamieson RE, Heywood JL, Rogers AD, Billett DSM, Pearce DA (2013) Bacterial biodiversity in deep-sea sediments from two regions of contrasting surface water productivity near the Crozet Islands, Southern Ocean. Deep Sea Research part I Oceanographic Research papers 75:67–77. doi: 10.1016/j.dsr.2012.12.012

  • Ji M, van Dorst J, Bissett A, Brown MV, Palmer AS, Snape I, Siciliano SD, Ferrari BC (2016) Microbial diversity at Mitchell Peninsula, Eastern Antarctica: a potential biodiversity “hotspot”. Polar Biol 39:237–249. doi:10.1007/s00300-015-1776-y

    Article  Google Scholar 

  • Jung DO, Achenbach LA, Karr EA, Takaichi S, Madigan MT (2004) A gas vesiculate planktonic strain of the purple non-sulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, Dry Valleys, Antarctica. Arch Microbiol 182:236–243

    Article  CAS  PubMed  Google Scholar 

  • Karl DM, Bird DF, Björkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto J, Kurihara T, Kitagawa M, Kato I, Esaki N (2007) Proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis Ac10, for global identification of cold-inducible proteins. Extremophiles 11:819–826

    Article  CAS  PubMed  Google Scholar 

  • Kube M, Chernikova TN, Al-Ramahi Y, Beloqui A, Lopez-Cortez N, Guazzaroni ME, Heipieper HJ, Klages S, Kotsyurbenko OR, Langer I, Nechitaylo TY, Lünsdorf H, Fernández M, Juárez S, Ciordia S, Singer A, Kagan O, Egorova O, Petit PA, Stogios P, Kim Y, Tchigvintsev A, Flick R, Denaro R, Genovese M, Albar JP, Reva ON, Martínez-Gomariz M, Tran H, Ferrer M, Savchenko A, Yakunin AF, Yakimov MM, Golyshina OV, Reinhardt R, Golyshin PN (2013) Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispiraantarctica. Nat Commun 4:2156. doi:10.1038/ncomms3156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Labrenz M, Lawson PA, Tindall BJ, Hirsch P (2009) Roseibaca ekhonensis gen. nov., sp. nov., an alkalitolerant and aerobic bacteriochlorophyll a-producing alphaproteobacterium from hypersaline Ekho Lake. Int J Syst Evol Microbiol 59:1935–1940

    Article  CAS  PubMed  Google Scholar 

  • Lanoil B, Skidmore M, Priscu JC, Han S, Foo W, Vogel SW, Tulaczyk S, Engelhardt H (2009) Bacteria beneath the West Antarctic Ice Sheet. Environ Microbiol 11:609–615

    Article  CAS  PubMed  Google Scholar 

  • Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 79:5963–5972

    Article  CAS  Google Scholar 

  • Laybourn-Parry J (2002) Survival mechanisms in Antarctic lakes. Philos Trans R Soc Lond B Biol Sci 357(1423):863–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laybourn-Parry J (2009) No place too cold. Science 324:1521–1522

    Article  CAS  PubMed  Google Scholar 

  • Laybourn-Parry J, Pearce DA (2007) The biodiversity and ecology of Antarctic lakes – models for evolution. Philos Trans R Soc Lond B Biol Sci 362(1488):2273–2289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laybourn-Parry J, Pearce DA (2016) Heterotrophic bacteria in Antarctic lacustrine and glacial environments. Polar Biol. doi:10.1007/s00300-016-2011-1

  • Lee CC, Fenchel T (1972) Studies on ciliates associated with sea ice from Antarctica. II. Temperature responses and tolerances in ciliates from Antarctic, temperate and tropical habitats. Arch Protistenk 114:237–244

    Google Scholar 

  • Li S, Xiao X, Yin X, Wang F (2006) Bacterial community along a historic lake sediment core of Ardley Island, west Antarctica. Extremophiles 10:461–467

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zhang P, Cong B, Liu C, Lin X, Shen J, Huang X (2010) Molecular cloning and expression analysis of a cytosolic Hsp70 gene from Antarctic ice algae Chlamydomonas sp. I CE-L. Extremophiles 14:329–337

    Article  PubMed  CAS  Google Scholar 

  • Lopatina A, Medvedeva S, Shmakov S, Logacheva MD, Krylenkov V, Severinov K (2016) Metagenomic analysis of bacterial communities of Antarctic surface snow. Front Microbiol 7:398. doi:10.3389/fmicb.2016.00398 eCollection 2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Mavromatis K, Feller G, Kokkinidis M, Bouriotis V (2003) Cold adaptation of a psychrophilic chitinase: a mutagenesis study. Protein Eng 16:497–503

    Article  CAS  PubMed  Google Scholar 

  • Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D'Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EP, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    Google Scholar 

  • Mikucki JA, Priscu JC (2007) Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl Environ Microbiol 73:4029–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montes MJ, Mercade E, Bozal N, Guinea J (2004) Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 54:1521–1526

    Article  CAS  PubMed  Google Scholar 

  • Möhlmann DTF (2003) Unfrozen subsurface water on Mars: presence and implications. Int J Astrobiol 2:213–216

    Article  Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NP (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naganuma T, Hua PN, Okamoto T, Ban S, Imura S, Kanda H (2005) Depth distribution of euryhaline halophilic bacteria in Suribati Ike, a meromictic lake in East Antarctica. Polar Biol 28:964–970

    Article  Google Scholar 

  • Newsham KK, Pearce DA, Bridge PD (2010) Minimal influence of water and nutrient content on the bacterial community composition of a maritime Antarctic soil. Microbiol Res 165:523–530

    Article  CAS  PubMed  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998) Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170:331–338I

    Article  CAS  PubMed  Google Scholar 

  • Olson JB, Steppe TF, Litaker RW, Paerl HW (1998) N2 fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microb Ecol 36:231–238

    Article  CAS  PubMed  Google Scholar 

  • Pearce DA, Wilson WH (2003) Viruses in Antarctic ecosystems. Antarct Sci 15:319–331

    Article  Google Scholar 

  • Pearce DA (2005) The structure and stability of the bacterioplankton community in Antarctic freshwater lakes, subject to extremely rapid environmental change. FEMS Microbiol Ecol 53:61–72

    Article  CAS  PubMed  Google Scholar 

  • Pearce DA (2008) Climate change and the microbiology of the Antarctic Peninsula region. Sci Prog 91:203–217

    Article  PubMed  Google Scholar 

  • Pearce DA (2009) Antarctic subglacial lakes – a new frontier in microbial ecology. ISME J 3:877–880

    Article  CAS  PubMed  Google Scholar 

  • Pearce DA, Bridge PD, Hughes K, Sattler B, Psenner R, Russell NJ (2009) Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69:143–157

    Article  CAS  PubMed  Google Scholar 

  • Pearce DA, Hughes KA, ss, Lachlan-Cope TA, Jones AE (2010) Biodiversity of air-borne microorganisms at Halley station, Antarctica. Extremophiles 14:145–159

    Article  PubMed  Google Scholar 

  • Pearce DA, Newsham KK, Thorne MA, Calvo-Bado L, Krsek M, Laskaris P, Hodson A, Wellington EM (2012) Metagenomic analysis of a southern maritime antarctic soil. Front Microbiol 3:403. doi:10.3389/fmicb.2012.00403 eCollection 2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearce DA, Hodgson DA, Thorne MAS, Burns G, Cockell CS (2013) Preliminary analysis of life within a former subglacial lake sediment in Antarctica. Diversity 5:680–702. doi:10.3390/d5030680

    Article  Google Scholar 

  • Pearce DA, Alekhina IA, Terauds A, Wilmotte A, Quesada A, Edwards A, Dommergue A, Sattler B, Adams BJ, Magalhães C, Chu WL, Lau MC, Cary C, Smith DJ, Wall DH, Eguren G, Matcher G, Bradley JA, de Vera JP, Elster J, Hughes KA, Cuthbertson L, Benning LG, Gunde-Cimerman N, Convey P, Hong SG, Pointing SB, Pellizari VH, Vincent WF (2016) Aerobiology over Antarctica - a new initiative for atmospheric ecology. Front Microbiol 7:16. doi:10.3389/fmicb.2016.00016

    Article  PubMed  PubMed Central  Google Scholar 

  • Pocock T, Lachance MA, Proschold T, Priscu JC, Kim SS, Huner NPA (2004) Identification of a psychrophilic green alga from Lake Bonney Antarctica: Chlamydomonas raudensis Ettl. (UWO 241) Chlorophyceae. J Phycol 40:1138–1148

    Article  Google Scholar 

  • Pointing SB, Chan Y, Lacap DC, Lau MCY, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Nat Acad Sci USA 106:19964–19969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poli A, Esposito E, Orlando P, Lama L, Giordano A, de Appolonia F, Nicolaus B, Gambacorta A (2006) Halomonas alkaliantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. Syst Appl Microbiol 30:31–38

    Article  PubMed  CAS  Google Scholar 

  • Poglazova MN, Mitskevich IN, Abyzov SS, Ivanov MV (2001) Microbiological Characterization of the accreted ice of subglacial Lake Vostok, Antarctica. Microbiology 70:723–730

    Article  CAS  Google Scholar 

  • Pommier T, Canback B, Riemann L, Bostrom KH, Simu K, Lundberg P, Unlid A, Hagström Å (2007) Global patterns of diversity and community structure in marine bacterioplankton. Mol Ecol 16:867–880

    Article  CAS  PubMed  Google Scholar 

  • Prescott GW (1978) How to know the freshwater algae, 3rd edn. Wm C Brown, Dubuque, IA, USA

    Google Scholar 

  • Price PB (2006) Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol 59:217–231

    Article  CAS  Google Scholar 

  • Price PB, Nagornov OV, Bay R, Chirkin D, He Y, Miocinovic P, Richards A, Woschnagg K, Koci B, Zagorodnov V (2002) Temperature profile for glacial ice at the South Pole: Implications for life in a nearby subglacial lake. Proc Natl Acad Sci U S A 99:7844–7847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, McKay CP, Takacs CD, Welch KA, Wolf CF, Kirshtein JD, Avci R (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Priscu JC, Kennicutt II, MC, Bell RE, Bulat SA, Ellis-Evans JC, Lukin VV, Petit J-R, Powell RD,Siegert MJ, Tabacco I (2005) Exploring subglacial Antarctic Lake environments. American Geophysical Union, EOS Transactions 86:193–200

    Google Scholar 

  • Purves K, Macintyre L, Brennan D, Hreggviðsson GÓ, Kuttner E, Ásgeirsdóttir ME, Young LC, Green DH, Edrada-Ebel R, Duncan KR (2016) Using molecular networking for microbial secondary metabolite bioprospecting. Metabolites 6(1):2. doi:10.3390/metabo6010002

    Article  PubMed Central  CAS  Google Scholar 

  • Rakusa-Suszczewski S (1980) The role of near-shore research in gaining and understanding of the functioning of the Antarctic ecosystem. Pol Arch Hydrobiol 27:229–233

    Google Scholar 

  • Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy GS, Prakash JS, Vairamani M, Prabhakar S, Matsumoto GI, Shivaji S (2002) Planococcus antarcticus and Planococcus psychrophilus spp. nov. isolated from cyanobacterial mat samples collected from ponds in Antarctica. Extremophiles 6:253–261

    Article  CAS  PubMed  Google Scholar 

  • Reddy GS, Raghavan PU, Sarita NB, Prakash JS, Nagesh N, Delille D, Shivaji S (2003) Halomonas glaciei sp. nov. isolated from fast ice of Adelie Land, Antarctica. Extremophiles 7:55–61

    CAS  PubMed  Google Scholar 

  • Reid IN, Sparks WB, Lubow S, McGrath M, Livio M, Valenti J, Sowers KR, Shukla HD, MacAuley S, Miller T, Suvanasuthi R, Belas R, Colman A, Robb FT, DasSarma P, Müller JA, Coker JA, Cavicchioli R, Chen F, DasSarma S (2006) Terrestrial models for extraterrestrial life: methanogens and halophiles at Martian temperatures. Int J Astrobiol 5:89–97

    Article  Google Scholar 

  • Riedel T, Held B, Nolan M, Lucas S, Lapidus A, Tice H, Del Rio TG, Cheng JF, Han C, Tapia R, Goodwin LA, Pitluck S, Liolios K, Mavromatis K, Pagani I, Ivanova N, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Rohde M, Tindall BJ, Detter JC, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Woyke T (2012) Genome sequence of the Antarctic rhodopsins-containing flavobacterium Gillisia limnaea type strain (R-8282(T)). Stand Genomic Sci 7(1):107–119. doi:10.4056/sigs.3216895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robador A, Müller AL, Sawicka JE, Berry D, Hubert CR, Loy A, Jørgensen BB, Brüchert V (2016) Activity and community structures of sulfatereducing microorganisms in polar, temperate and tropical marine sediments. ISME J 10:796–780 doi: 10.1038/ismej.2015.157

    Google Scholar 

  • Rogers AD, Tyler PA, Connelly DP, Copley JT, James R, Larter RD, Linse K, Mills RA, Garabato AN, Pancost RD, Pearce DA, Polunin NV, German CR, Shank T, Boersch-Supan PH, Alker BJ, Aquilina A, Bennett SA, Clarke A, Dinley RJ, Graham AG, Green DR, Hawkes JA, Hepburn L, Hilario A, Huvenne VA, Marsh L, Ramirez-Llodra E, Reid WD, Roterman CN, Sweeting CJ, Thatje S, Zwirglmaier K (2012) The discovery of new deep-sea hydrothermal vent communities in the southern ocean and implications for biogeography. PLoS Biol 10(1):e1001234. doi:10.1371/journal.pbio.1001234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28:239–242

    Article  Google Scholar 

  • Saunders NF, Thomas T, Curmi PM, Mattick JS, Kuczek E, Slade R, Davis J, Franzmann PD, Boone D, Rusterholtz K, Feldman R, Gates C, Bench S, Sowers K, Kadner K, Aerts A, Dehal P, Detter C, Glavina T, Lucas S, Richardson P, Larimer F, Hauser L, Land M, Cavicchioli R (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13:1580–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Säwström C, Anesio MA, Granéli W, Laybourn-Parry J (2007) Seasonal viral loop dynamics in two large ultraoligotrophic Antarctic freshwater lakes. Microb Ecol 53:1–11

    Article  PubMed  Google Scholar 

  • Schiraldi C, De Rosa M (2002) The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol 20:515–521

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Scott JH, Cody GD, Fogel ML, Hazen RM, Hemley RJ, Huntress WT (2002) Microbial activity at gigapascal pressures. Science 295:1514–1516

    Article  CAS  PubMed  Google Scholar 

  • Sharp M, Parks J, Cragg B, Fairchild I, Lamb H, Tranter M (1999) Widespread bacterial population at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110

    Article  CAS  Google Scholar 

  • Sheridan PP, Loveland-Curtze J, Miteva VI, Brenchley JE (2003) Rhodoglobus vestalii gen. nov. sp. nov., a novel psychrophilic organism isolated from an Antarctic Dry Valley Lake. Int J Syst Evol Microbiol 53:985–994

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Reddy GSN, Raghavan PUM, Sarita NB, Delille D (2004) Psychrobacter salsus sp. nov. and Psychrobacter adeliensis sp. nov. isolated from fast ice from Adelie Land, Antarctica. Syst Appl Microbiol 27:628–635

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold adapted enzymes. Ann Rev Biochem 75:403–433

    Article  CAS  PubMed  Google Scholar 

  • Siegert MJ, Tranter M, Ellis-Evans JC, Priscu JC, Berry Lyons W (2003) The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydrol Process 17:795–814

    Article  Google Scholar 

  • Sjöling S, Cowan DA (2003) High 16S rDNA bacteria diversity in glacial meltwater lake sediment, Bratina island, Antarctica. Extremophiles 7:275–282

    Article  PubMed  CAS  Google Scholar 

  • Smith JJ, Ah Tow L, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421

    Article  PubMed  Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2006) Penicillium mycobiota in Arctic subglacial ice. Microb Ecol 52:207–216

    Article  PubMed  Google Scholar 

  • Spring S, Merkhoffer B, Weiss N, Kroppenstedt RM, Hippe H, Stackebrandt E (2003) Characterization of novel psychrophilic clostridia from an Antarctic microbial mat: description of Clostridium frigoris sp. nov., Clostridium lacusfryxellense sp. nov., Clostridium bowmanii sp. nov. and Clostridium psychrophilum sp. nov. and reclassification of Clostridium laramiense as Clostridium estertheticum subsp. laramiense subsp. nov. Int J Syst Evol Microbiol 53:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Staley JT, Gosink JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53:189–215

    Article  CAS  PubMed  Google Scholar 

  • Stingl U, Cho J-C, Foo W, Vergin KL, Lanoil B, Giovannoni SJ (2008) Dilution-to-extinction culturing of psychrotolerant planktonic bacteria from permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica. Microb Ecol 55:395–405

    Article  CAS  PubMed  Google Scholar 

  • Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57(2):272–289

    Article  CAS  PubMed  Google Scholar 

  • Tatur A (2002) Ornithogenic ecosystems in the Maritime Antarctic – formation, development and disintegration. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Series Ecological Studies, vol 154. Springer, Berlin, Heidelberg, pp. 161–184

    Google Scholar 

  • Telling J, Anesio AM, Tranter M, Fountain AG, Nylen T, Hawkings J, Singh VB, Kaur P, Musilova M, Wadham JL (2014) Spring thaw ionic pulses boost nutrient availability and microbial growth in entombed Antarctic Dry Valley cryoconite holes. Front Microbiol 5:694. doi:10.3389/fmicb.2014.00694

    Article  PubMed  PubMed Central  Google Scholar 

  • Terauds A, Chown SL,Morgan F, Peat HJ, Watts DJ, Keys H, Convey P, Bergstrom DM (2012) Conservation biogeography of the Antarctic. Diversity Distrib 18(7). doi:10.1111/j.1472-4642.2012.00925.x

  • Thomas DN, Dieckmann GS (2002) Antarctic sea ice -a habitat for extremophiles. Science 295:641–644

    Article  CAS  PubMed  Google Scholar 

  • Tindall B (2004) Prokaryotic diversity in the Antarctic: The tip of the iceberg. Microb Ecol 47:271–283

    Article  CAS  PubMed  Google Scholar 

  • Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Sphingopyxis alaskensis assessed using quantitative proteomics. Environ Microbiol 12:2658–2676

    CAS  PubMed  Google Scholar 

  • Turner J, King JC, Lachlan-Cope TA, Jones PD (2002) Recent temperature trends in the Antarctic. Nature 418:291–292

    Article  CAS  PubMed  Google Scholar 

  • Tytgat B, Verleyen E, Obbels D, Peeters K, De Wever A, D'hondt S, De Meyer T, Van Criekinge W, Vyverman W, Willems A (2014) Bacterial diversity assessment in Antarctic terrestrial and aquatic microbial mats: a comparison between bidirectional pyrosequencing and cultivation. PLoS One 9(6):e97564. doi:10.1371/journal.pone.0097564 eCollection 2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tytgat B, Verleyen E, Sweetlove M, D’hondt S, Clercx P, Van Ranst E, Peeters K, Roberts S, Namsaraev Z, Wilmotte A, Vyverman W, Willems A (2016) Bacterial community composition in relation to bedrock type and macrobiota in soils from the Sør Rondane Mountains, East Antarctica.FEMS Microbiol Ecol 92(9).pii: fiw126. doi: 10.1093/femsec/fiw126. Epub 2016 Jul 10

  • Van Trappen S, Mergaert J, Eygen SV, Dawyndt P, Cnockaert MC, Swings J (2002) Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Syst Appl Microbiol 25:603–610

    Article  CAS  PubMed  Google Scholar 

  • Van Trappen S, Mergaert J, Swings J (2003) Flavobacterium gelidilacus sp. nov., isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 53:1241–1245

    Article  CAS  PubMed  Google Scholar 

  • Van Trappen S, Vandecandelaere I, Mergaert J, Swings J (2004a) Algoriphagus antarcticus sp. nov., a novel psychrophile from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:1969–1973

    Article  CAS  PubMed  Google Scholar 

  • Van Trappen S, Mergaert J, Swings J (2004b) Lokanella salsilacus gen. nov., sp. nov., Lokanella fryxellensis sp. nov. and Lokanella vestfoldensis sp. nov., new members of the Rhodobacter group, isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:1263–1269

    Article  CAS  PubMed  Google Scholar 

  • Van Trappen S, Vandecandelaere I, Mergaert J, Swings J (2004c) Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:85–92

    Article  CAS  PubMed  Google Scholar 

  • Van Trappen S, Vandecandelaere I, Mergaert J, Swings J (2005) Flavobacterium fryxellicola sp. nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 55:769–772

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskaya TA, Siletzky R, Jefferies N, Tiedje JM, Kathariou S (2007) Effect of low temperature and culture media on the growth and freeze-thawing tolerance of Exiguobacterium strains. Cryobiology 54:234–240

    Article  CAS  PubMed  Google Scholar 

  • Wilson WH, Lane D, Pearce DA, Ellis-Evans JC (2000) Transmission electron microscope analysis of virus-like particles in the freshwater lakes of Signy Island, Antarctica. Polar Biol 23:657–660

    Article  Google Scholar 

  • Willerslev E, Hansen A, Christensen B, Steffensen J, Arctander P (1999) Diversity of Holocene life forms in fossil glacier ice. Proc Natl Acad Sci U S A 96:8017–8021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yergeau E, Schoondermark-Stolk SA, Brodie EL, Déjean S, DeSantis TZ, Gonçalves O, Piceno YM, Andersen GL, Kowalchuk GA (2008) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3:340–351

    Article  PubMed  CAS  Google Scholar 

  • Yi H, Oh HM, Lee JH, Kim SJ, Chun J (2005a) Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 55:637–641

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Yoon HI, Chun J (2005b) Sejongia antarctica gen. nov., sp. nov. and Sejongia jeonii sp. nov., isolated from the Antarctic. Int J Syst Evol Microbiol 55:409–416

    Article  CAS  PubMed  Google Scholar 

  • Yoshimune K, Galkin A, Kulakova L, Yoshimura T, Esaki N (2005) Cold-active DnaK of an Antarctic psychrotroph Shewanella sp. Ac10 supporting the growth of dnaK-null mutant of Escherichia coli at cold temperatures. Extremophiles 9:145–150

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Xin YH, Liu HC, Chen B, Sheng J, Chi ZM, Zhou PJ, Zhang DC (2008) Sporosarcina antarctica sp. nov., a psychrophilic bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 58:2114–2117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This contribution was funded by the Terrestrial and Coastal Work Package of the Ecosystems Programme, Polar Science for Planet Earth, British Antarctic Survey (BAS) and Natural Environment Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Pearce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pearce, D.A. (2017). Extremophiles in Antarctica: Life at Low Temperatures. In: Stan-Lotter, H., Fendrihan, S. (eds) Adaption of Microbial Life to Environmental Extremes. Springer, Cham. https://doi.org/10.1007/978-3-319-48327-6_5

Download citation

Publish with us

Policies and ethics