Skip to main content

Extremophiles in Spacecraft Assembly Cleanrooms

  • Chapter
  • First Online:
Adaption of Microbial Life to Environmental Extremes

Abstract

Spacecraft are usually assembled, tested, and launched in cleanrooms. Besides particles, microbial contamination can also be a serious concern. Depending on the target of a mission, terrestrial biomolecules or even surviving microorganisms could contaminate the extraterrestrial environment but also cause false-positive life-detection results.

Spacecraft assembly cleanrooms and the instruments themselves are subjected to strict monitoring of the bioburden and cleanliness regimes. Due to their confinement, the humidity and temperature control, and the barely available nutrients, cleanrooms are considered extreme environments for microorganisms. In addition, numerous sterilization and cleanliness procedures pose extraordinary stresses to microorganisms in these habitats, reducing the overall load of microbes tremendously but supporting specifically adapted microorganisms. In many cases, these microbes are (multi)resistant toward harshest conditions. In this chapter, characteristics of numerous extremophilic and extremotolerant microorganisms that have been detected in spacecraft assembly cleanrooms and on spacecraft itself are summarized, including spore-forming, oligotrophic, alkaliphilic, autotrophic, anaerobic, thermophilic, and psychrophilic microorganisms. It becomes clear that the cleanroom microbial community develops a smart strategy to withstand the severe stresses applied, making some cleanroom microbes even more resistant than their counterparts in natural biotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Administration NASA (2010) Handbook for the microbial examination of space hardware. NASA technical handbook, Washington DC

    Google Scholar 

  • Ahmad S, Scopes RK, Rees GN, Patel BK (2000) Saccharococcus caldoxylosilyticus sp. nov., an obligately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 50:517–523

    Article  CAS  PubMed  Google Scholar 

  • Amann R, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beblo K, Rabbow E, Rachel R, Huber H, Rettberg P (2009) Tolerance of thermophilic and hyperthermophilic microorganisms to desiccation. Extremophiles 13:521–531

    Article  PubMed  Google Scholar 

  • Beblo K, Douki T, Schmalz G, Rachel R, Wirth R, Huber H, Reitz G, Rettberg P (2011) Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation. Arch Microbiol 193:797–809

    Article  CAS  PubMed  Google Scholar 

  • Behrendt U, Schumann P, Stieglmeier M, Pukall R, Augustin J, Spröer C, Schwendner P, Moissl-Eichinger C, Ulrich A (2010) Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity – Description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room. Syst Appl Microbiol 33:328–336

    Article  CAS  PubMed  Google Scholar 

  • Boston P, Ivanov MV, McKay CP (1992) On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95:300–308

    Article  CAS  PubMed  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  CAS  PubMed  Google Scholar 

  • Bruckner JC, Osman S, Venkateswaran K, Conley C (2008) Space microbiology: planetary protection, burden, diversity and significance of spacecraft associated microbes. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier, Oxford, pp. 52–66

    Google Scholar 

  • Cano RJ, Borucki MK (1995) Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268:1060–1064

    Article  CAS  PubMed  Google Scholar 

  • Conley CA (2011) Outer space treaty. In: Gargaud M (ed) Encyclopedia of astrobiology. Springer Verlag Berlin, Heidelberg, p. 1192

    Google Scholar 

  • Cox MM, Battista JR (2005) Deinococcus radiodurans – the consummate survivor. Nat Rev Microbiol 3:882–892

    Article  CAS  PubMed  Google Scholar 

  • Crawford RL (2005) Microbial diversity and its relationship to planetary protection. Appl Environ Microbiol 71:4163–4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford RL, Paszczynski A, Allenbach L (2003) Potassium ferrate [Fe(VI)] does not mediate self-sterilization of a surrogate Mars soil. BMC Microbiol 3:4. doi:10.1186/1471-2180-3-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Debus A (2006) The European standard on planetary protection requirements. Res Microbiol 157:13–18

    Article  PubMed  Google Scholar 

  • DeVeaux LC, Müller JA, Smith J, Petrisko J, Wells DP, DasSarma S (2007) Extremely radiation-resistant mutants of a halophilic archaeon with increased single-stranded DNA-binding protein (RPA) gene expression. Radiat Res 168:507–514

    Article  CAS  PubMed  Google Scholar 

  • ESA (2008) Microbial examination of flight hardware and clean rooms. ECSS-Q-ST-70-55C. European Cooperation for Space Standardization, ESA-ESTEC, The Netherlands

    Google Scholar 

  • Fendrihan S, Berces A, Lammer H, Musso M, Ronto G, Polacsek TK, Holzinger A, Kolb C, Stan-Lotter H (2009) Investigating the effects of simulated Martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. Astrobiology 9:104–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Osman S, Vaishampayan P, Venkateswaran K (2010) Recurrent isolation of extremotolerant bacteria from the clean room where Phoenix spacecraft components were assembled. Astrobiology 10:325–335

    Article  CAS  PubMed  Google Scholar 

  • Gioia J, Yerrapragada S, Qin X, Jiang H, Igboeli OC, Muzny D, Dugan-Rocha S, Ding Y, Hawes A, Liu W, Perez L, Kovar C, Dinh H, Lee S, Nazareth L, Blyth P, Holder M, Buhay C, Tirumalai MR, Liu Y, Dasgupta I, Bokhetache L, Fujita M, Karouia F, Eswara Moorthy P, Siefert J, Uzman A, Buzumbo P, Verma A, Zwiya H, McWilliams BD, Olowu A, Clinkenbeard KD, Newcombe D, Golebiewski L, Petrosino JF, Nicholson WL, Fox GE, Venkateswaran K, Highlander SK, Weinstock GM (2007) Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032. PLoS One 2(9):e928

    Article  PubMed  PubMed Central  Google Scholar 

  • Head DS, Cenkowski S, Holley R, Blank G (2008) Effects of superheated steam on Geobacillus stearothermophilus spore viability. J Appl Microbiol 104:1213–1220

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Dai X, He L, Wang YN, Wang BJ, Liu Z, Liu SJ (2005) Sanguibacter marinus sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 55:1755–1758

    Article  CAS  PubMed  Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology. Academic Press, New York, pp. 117–132

    Google Scholar 

  • Kempf MJ, Chen F, Kern R, Venkateswaran K (2005) Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility. Astrobiology 5:391–405

    Article  CAS  PubMed  Google Scholar 

  • Kendrick MG, Kral TA (2006) Survival of methanogens during desiccation: implications for life on Mars. Astrobiology 6:546–551

    Article  CAS  PubMed  Google Scholar 

  • Kminek G, Rummel JD (2015) COSPAR’s Planetary Protection Policy. Space Res Today 193:7–18

    Article  Google Scholar 

  • Küsel K, Wagner C, Drake HL (1999) Enumeration and metabolic product profiles of the anaerobic microflora in the mineral soil and litter of a beech forest. FEMS Microbiol Ecol 29:91–103

    Article  Google Scholar 

  • La Duc MT, Nicholson W, Kern R, Venkateswaran K (2003) Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ Microbiol 5:977–985

    Article  CAS  PubMed  Google Scholar 

  • La Duc MT, Kern R, Venkateswaran K (2004) Microbial monitoring of spacecraft and associated environments. Microb Ecol 47:150–158

    Article  CAS  PubMed  Google Scholar 

  • La Duc MT, Dekas A, Osman S, Moissl C, Newcombe D, Venkateswaran K (2007) Isolation and characterization of bacteria capable of tolerating the extreme. Appl Environ Microbiol 73:2600–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Duc MT, Osman S, Vaishampayan P, Piceno Y, Andersen G, Spry JA, Venkateswaran K (2009) Comprehensive census of bacteria in clean rooms by using DNA microarray and cloning methods. Appl Environ Microbiol 75:6559–6567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis GA (2001) Martian water: are there extant halobacteria on Mars? Astrobiology 1:161–164

    Article  CAS  PubMed  Google Scholar 

  • Link L, Sawyer J, Venkateswaran K, Nicholson W (2004) Extreme spore UV resistance of Bacillus pumilus isolates obtained from an ultraclean spacecraft assembly facility. Microb Ecol 47:159–163

    Article  CAS  PubMed  Google Scholar 

  • Mahnert A, Vaishampayan P, Probst AJ, Auerbach A, Moissl-Eichinger C, Venkateswaran K, Berg G (2015) Cleanroom maintenance significantly reduces abundance but not diversity of indoor microbiomes. PLoS One 10(8):e0134848. doi:10.1371/journal.pone.0134848

    Article  PubMed  PubMed Central  Google Scholar 

  • Moeller R, Setlow P, Horneck G, Berger T, Reitz G, Rettberg P, Doherty AJ, Okayasu R, Nicholson WL (2008) Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X-rays and high-energy charged (HZE) particle bombardment. J Bacteriol 190:1134–1140

    Article  CAS  PubMed  Google Scholar 

  • Moissl C, Osman S, La Duc MT, Dekas A, Brodie E, DeSantis T, Venkateswaran K (2007) Molecular bacterial community analysis of clean rooms where spacecraft are assembled. FEMS Microbiol Ecol 61:509–521

    Article  CAS  PubMed  Google Scholar 

  • Moissl C, Bruckner JC, Venkateswaran K (2008) Archaeal diversity analysis of spacecraft assembly clean rooms. ISME J 2:115–119

    Article  CAS  PubMed  Google Scholar 

  • Moissl-Eichinger C (2011) Archaea in artificial environments: their presence in global spacecraft clean rooms and impact on planetary protection. ISME J 5:209–219

    Article  PubMed  Google Scholar 

  • Moissl-Eichinger C, Rettberg P, Pukall R (2012) The first collection of spacecraft-associated microorganisms: a public source for extremotolerant microorganisms from spacecraft assembly clean rooms. Astrobiology 12:1024–1034

    Article  PubMed  Google Scholar 

  • Moissl-Eichinger C, Pukall R, Probst AJ, Stieglmeier M, Schwendner P, Mora M, Barczyk S, Bohmeier M, Rettberg P (2013) Lessons learned from the microbial analysis of the Herschel spacecraft during assembly, integration, and test operations. Astrobiology 13:1125–1139. doi:10.1089/ast.2013.1024

    Article  PubMed  Google Scholar 

  • Nagarkar PP, Ravetkar SD, Watve MG (2001) Oligophilic bacteria as tools to monitor aseptic pharmaceutical production units. Appl Environ Microbiol 67:1371–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Research Council (2006) Expanding our knowledge of the limits of life on Earth. In: Preventing the forward contamination of Mars. National Academies Press, Washington, pp. 69–90

    Google Scholar 

  • Newcombe DA, Schuerger AC, Benardini JN, Dickinson D, Tanner R, Venkateswaran K (2005) Survival of spacecraft-associated microorganisms under simulated martian UV irradiation. Appl Environ Microbiol 71:8147–8156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newcombe D, Dekas A, Mayilraj S, Venkateswaran K (2009) Bacillus canaveralius sp. nov., an alkali-tolerant bacterium isolated from a spacecraft assembly facility. Int J Syst Evol Microbiol 59:2015–2019

    Article  PubMed  Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson WL, Schuerger AC, Setlow P (2005) The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutat Res 571:249–264

    Article  CAS  PubMed  Google Scholar 

  • Osman S, Peeters Z, La Duc MT, Mancinelli R, Ehrenfreund P, Venkateswaran K (2008) Effect of shadowing on survival of bacteria under conditions simulating the Martian atmosphere and UV radiation. Appl Environ Microbiol 74:959–970

    Article  CAS  PubMed  Google Scholar 

  • Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14:300–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters V, Conrad R (1995) Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl Environ Microbiol 61:1673–1676

    Google Scholar 

  • Pillinger JM, Pillinger CT, Sancisi-Frey S, Spry JA (2006) The microbiology of spacecraft hardware: lessons learned from the planetary protection activities on the Beagle 2 spacecraft. Res Microbiol 157:19–24

    Article  PubMed  Google Scholar 

  • Plumb RC, Bishop JL, Edwards JO (1993) The pH of Mars. In: Lunar and Planetary Inst., Mars: past, present, and future. Results from the MSATT program, part 1, pp 40–41

    Google Scholar 

  • Probst A, Facius R, Wirth R, Moissl-Eichinger C (2010a) Validation of a nylon-flocked-swab protocol for efficient recovery of bacterial spores from smooth and rough surfaces. Appl Environ Microbiol 76:5148–5158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Probst A, Vaishampayan P, Osman S, Moissl-Eichinger C, Andersen GL, Venkateswaran K (2010b) Diversity of anaerobic microbes in spacecraft assembly clean rooms. Appl Environ Microbiol 76:2837–2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Probst AJ, Auerbach AK, Moissl-Eichinger C (2013) Archaea on human skin. PLoS One 8(6):e65388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puleo JR, Fields ND, Bergstrom SL, Oxborrow GS, Stabekis PD, Koukol R (1977) Microbiological profiles of the Viking spacecraft. Appl Environ Microbiol 33:379–384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rettberg P, Anesio AM, Baker VR, Baross JA, Cady SL, Detsis E, Foreman CM, Hauber E, Ori GG, Pearce DA (2016) Planetary protection and Mars Special Regions – a suggestion for updating the definition. Astrobiology 16:119–125. doi:10.1089/ast.2016.1472

    Article  PubMed  Google Scholar 

  • Rummel JD, Beaty DW, Jones MA, Bakermans C, Barlow NG, Boston PJ, Chevrier VF, Clark BC, de Vera J-PP, Gough RV (2014) A new analysis of Mars “special regions”: findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology 14:887–968

    Article  PubMed  Google Scholar 

  • Schuerger AC, Mancinelli RL, Kern RG, Rothschild LJ, McKay CP (2003) Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars. Icarus 165:253–276

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Makuch D, Grinspoon DH (2005) Biologically enhanced energy and carbon cycling on Titan? Astrobiology 5:560–567

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Sproer C, Rainey FA, Burghardt J, Pauker O, Hippe H (1997) Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47:1134–1139

    Article  CAS  PubMed  Google Scholar 

  • Stieglmeier M, Wirth R, Kminek G, Moissl-Eichinger C (2009) Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms. Appl Environ Microbiol 75:3484–3491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tally FP, Stewart PR, Sutter VL, Rosenblatt JE (1975) Oxygen tolerance of fresh clinical anaerobic bacteria. J Clin Microbiol 1:161–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taubner RS, Schleper C, Firneis MG, Rittmann SK (2015) Assessing the ecophysiology of methanogens in the context of recent astrobiological and planetological studies. Life 5:1652–1686

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas DJ, Boling J, Boston PJ, Campbell KA, McSpadden T, McWilliams L, Todd P (2006) Extremophiles or ecopoiesis: desirable traits for and survivability of pioneer Martian organisms. Grav Space Biol 19:91–104

    Google Scholar 

  • Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies”. United Nations Office for Disarmament Affairs. Retrieved 2013-04–18 http://disarmament.un.org/treaties/t/outer_space/text

  • Vaishampayan P, Probst A, Krishnamurthi S, Ghosh S, Osman S, McDowall A, Ruckmani A, Mayilraj S, Venkateswaran K (2010) Bacillus horneckiae sp. nov., isolated from a spacecraft-assembly clean room. Int J Syst Evol Microbiol 60:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Vaishampayan PA, Rabbow E, Horneck G, Venkateswaran KJ (2012) Survival of Bacillus pumilus spores for a prolonged period of time in real space conditions. Astrobiology 12:487–497

    Article  CAS  PubMed  Google Scholar 

  • Vaishampayan P, Moissl-Eichinger C, Pukall R, Schumann P, Spröer C, Augustus A, Roberts AH, Namba G, Cisneros J, Salmassi T (2013a) Description of Tersicoccus phoenicis gen. nov., sp. nov. isolated from spacecraft assembly clean room environments. Int J Syst Evol Microbiol 63:2463–2471

    Article  CAS  PubMed  Google Scholar 

  • Vaishampayan P, Probst AJ, La Duc MT, Bargoma E, Benardini JN, Andersen GL, Venkateswaran K (2013b) New perspectives on viable microbial communities in low-biomass cleanroom environments. ISME J 7:312–324

    Article  CAS  PubMed  Google Scholar 

  • Venkateswaran K, Satomi M, Chung S, Kern R, Koukol R, Basic C, White D (2001) Molecular microbial diversity of a spacecraft assembly facility. Syst Appl Microbiol 24:311–320

    Article  CAS  PubMed  Google Scholar 

  • Venkateswaran K, Vaishampayan P, Benardini JN III, Rooney AP, Spry JA (2014) Deposition of extreme-tolerant bacterial strains isolated during different phases of Phoenix spacecraft assembly in a public culture collection. Astrobiology 14:24–26

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank the European Space Agency (ESA) for funding our projects. Furthermore, I thank Michaela Stieglmeier and Petra Schwendner for providing data, Alexander Probst and Ruth Henneberger for critically reading the manuscript, and Gerhard Kminek (ESA) for discussions and valuable input. The preparation of graphical illustrations by Petra Schwendner and Alexander Probst is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Moissl-Eichinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Moissl-Eichinger, C. (2017). Extremophiles in Spacecraft Assembly Cleanrooms. In: Stan-Lotter, H., Fendrihan, S. (eds) Adaption of Microbial Life to Environmental Extremes. Springer, Cham. https://doi.org/10.1007/978-3-319-48327-6_10

Download citation

Publish with us

Policies and ethics