Skip to main content

The Reed-Muller-Fourier Transform—Computing Methods and Factorizations

  • Chapter
  • First Online:
Book cover Claudio Moraga: A Passion for Multi-Valued Logic and Soft Computing

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 349))

Abstract

Reed–Muller (RM) expressions are an important class of functional expressions for binary valued (Boolean) functions which have a double interpretation, as analogues to both Taylor series or Fourier series in classical mathematical analysis. In matrix notation, the set of basic functions in terms of which they are defined can be represented by a binary triangular matrix. Reed-Muller-Fourier (RMF) expressions are a generalisation of RM expressions to multiple valued functions preserving properties of RM expressions including the triangular structure of the transform matrix. In this paper, we discuss different methods for computing RMF coefficients over different data structure efficiently in terms of space and time. In particular, we consider algorithms. corresponding to Cooley-Tukey and constant geometry algorithms for Fast Fourier transform. We also consider algorithms based on various decompositions borrowed from the decomposition of the Pascal matrix and related computing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aburdene, M.F., Goodman, T.J.: The discrete Pascal transform and its applications, IEEE Signal Processing Letters, Vol. 12 (7), 2005, 493–495.

    Article  Google Scholar 

  2. Besslich, Ph. W.:Determination of the irredundant forms of a Boolean function using Walsh-Hadamard analysis and dyadic groups, IEE J. Comput. Dig. Tech., Vol. 1, 1978, 143–151.

    Article  Google Scholar 

  3. Besslich, Ph. W.:Efficient computer method for XOR logic design, IEE Proc., Part E, Vol. 129, 1982, 15–20.

    Google Scholar 

  4. Besslich, Ph.W.:Spectral processing of switching functions using signal flow transformations, in Karpovsky, M.G., (ed.):Spectral Techniques and Fault Detection, Academic Press, Orlando, Florida, 1985.

    Google Scholar 

  5. Besslich, Ph.W., Lu, T.: Diskrete Orthogonaltransformationen, Springer, Berlin, 1990.

    Book  MATH  Google Scholar 

  6. Bryant, R.E.: Graph-based algorithms for Boolean functions manipulation, IEEE Trans. Comput., Vol.C-35 (8), 1986, 667–691.

    Google Scholar 

  7. Clarke, E.M., McMillan, K.L., Zhao, X., Fujita, M.: Spectral transforms for extremely large Boolean functions, in Kebschull, U., Schubert, E., Rosenstiel, W., (eds.), Proc. IFIP WG 10.5 Workshop on Applications of the Reed-Muller Expansion in Circuit Design, 16–17.9.1993, Hamburg, Germany, 86–90.

    Google Scholar 

  8. Clarke, E.M., Zhao, X., Fujita, M., Matsunaga, Y., McGeer, R.: Fast Walsh transform computation with Binary Decision Diagram, Proc. IFIP WG 10.5 Workshop on Applications of the Reed-Muller Expansion in Circuit Design, September 16–17, 1993, Hamburg, Germany, 82–85.

    Google Scholar 

  9. Clarke, M., McMillan, K.L., Zhao, X., Fujita, M., Yang, J.: Spectral transforms for large Boolean functions with applications to technology mapping, in Proc. 30th ACM/IEEE Design Automation Conference (DAC-93), IEEE Computer Society Press, 54–60.

    Google Scholar 

  10. Farina, A., Giompapa, S., Graziano, A., Liburdi, A., Ravanelli, M., Zirilli, F.: Tartaglia-Pascal’s triangle – a historical perspective with applications, Signal, Image and Video Processing, Vol. 7 (1), 2013, 173–188.

    Article  Google Scholar 

  11. Fujita, M., Chih-Yuan Yang, J., Clarke, E.M., Zhao, Z., McGeer, P.: Fast spectrum computation for logic functions using Binary decision diagrams, Proc. IEEE Int. Symp. on Circuits and Systems ISCAS-94, London, England, UK, 30 May-2 June 1994, 275–278.

    Google Scholar 

  12. Gajić, D., Stanković, R.S.: The impact of address arithmetic on the GPU implementation of fast algorithms for the Vilenkin-Chrestenson transform, Proc. 43rd Int. Symp. on Multiple-Valued Logic, Toyama, Japan, May 22–24, 2013, 296–301.

    Google Scholar 

  13. Gibbs, J.E.: Walsh spectrometry a form of spectral analysis well suited to binary digital computation, NPL DES Repts., National Physical Lab., Teddington, Middlesex, England, 1967.

    Google Scholar 

  14. Gibbs, J.E.: Walsh functions and the Gibbs derivative, NPL DES Memo., No. 10, 1973, ii + 13.

    Google Scholar 

  15. Gibbs, J.E.: Instant Fourier transform, Electron. Lett., Vol. 13 (5), 122–123, 1977.

    Article  MathSciNet  Google Scholar 

  16. Good, I. J.: The interaction algorithm and practical Fourier analysis, Journal of the Royal Statistical Society, Series B, Vol. 20 (2), 1958, 361–372.

    MathSciNet  MATH  Google Scholar 

  17. Good, I. J.: The relationship between two Fast Fourier transforms, IEEE Trans. on Computers, Vol. 20, 1971, 310–317.

    Article  MATH  Google Scholar 

  18. Hurst, S.L.: Logical Processing of Digital Signals, Crane Russak and Edward Arnold, London and Basel, 1978.

    MATH  Google Scholar 

  19. Hurst, S.L., Miller, D.M., Muzio, J.C.: Spectral Techniques for Digital Logic, Academic Press, 1985.

    Google Scholar 

  20. Karpovsky, M.G., Stanković, R.S., Astola, J.T.: Spectral Logic and Its Application in the Design of Digital Devices, Wiley, 2008.

    Google Scholar 

  21. Lv, X.-G., Huang, T.-Z., Ren, Z.-G.: A new algorithm for linear systems of the Pascal type, Journal of Computational and Applied Mathematics, Vol. 225, 2009, 309–315.

    Article  MathSciNet  MATH  Google Scholar 

  22. Moraga, C., Stanković, R.S.: Properties of the Reed-Muller spectrum of symmetric functions, Facta. Univ. Ser. Energ., Vol. 20 (2), 2007, 281–294.

    Google Scholar 

  23. Moraga, C., Stanković, M., Stanković, R.S.: Some properties of ternary functions with bent Reed-Muller spectra, Proc. Workshop on Boolean Problems, September 17–19, Freiberg, Germany, 2014,

    Google Scholar 

  24. Moraga, C., Stanković, M., Stanković, R.S.: Contribution to the study of ternary functions with a bent Reed-Muller spectrum, 45th Int. Symp. on Multiple-Valued Logic (ISMVL-2015), Waterloo, ON, Canada, May 18–20, 2015, 133–138.

    Google Scholar 

  25. Moraga, C., Stojković, S., Stanković, R.S.: Periodic behaviour of generalized Reed-Muller spectra", Multiple Valued Logic and Soft Computing, Vol. 15 (4), 2009, 267–281.

    MathSciNet  MATH  Google Scholar 

  26. NVIDIA, OpenCL Programming Guide for the CUDA Architecture, 2011.

    Google Scholar 

  27. Sasao, T., Fujita, M., (eds.): Representations of Discrete Functions, Kluwer Academic Publishers, 1996.

    Google Scholar 

  28. Skodras, A.N.: Fast discrete Pascal transform, Electronics Letters, Vol. 42 (23), 2006, 1367–1368.

    Article  Google Scholar 

  29. Srinivasan, A., Kam, T., Malik, Sh., Brayant, R.K.: Algorithms for discrete function manipulation, Proc. Inf. Conf. on CAD, 1990, 92–95.

    Google Scholar 

  30. Stanković, R.S.: A note on the relation between Reed-Muller expansions and Walsh transform, IEEE Transactions on Electromagnetic Compatibility, Vol. EMC-24 (1), 1982, 68–70.

    Google Scholar 

  31. Stanković, R.S.: Some remarks on Fourier transforms and differential operators for digital functions, Proc. 22nd Int. Symp. on Multiple-Valued Logic, May 27–29, 1992, Sendai, Japan, 365–370.

    Google Scholar 

  32. Stanković, R. S.: Unified view of decision diagrams for representation of discrete functions, Multi. Val. Logic, Vol. 8 (2), 2002, 237–283.

    Google Scholar 

  33. Stanković, R.S., Astola, J.T.: Spectral Interpretation of Decision Diagrams, Springer, 2003.

    Google Scholar 

  34. Stanković, R.S. Astola, J.T., Moraga, C.: Representation of Multiple-Valued Logic Functions, Claypool & Morgan Publishers, 2012.

    Google Scholar 

  35. Stanković, R.S, Astola, J.T., Moraga, C.: Pascal matrices, Reed-Muller expressions and Reed-Muller error correcting codes, Zbornik Radova, Matematički institut, Belgrade, Serbia, Vol. 18 (26), 2015, 145–172.

    Google Scholar 

  36. Stanković, R.S., Moraga, C., Astola, J.T.: Reed-Muller expressions in the previous decade, Multiple-Valued Logic and Soft Computing, Vol. 10 (1), 2004, 5–28.

    MathSciNet  MATH  Google Scholar 

  37. Stanković, R.S, Astola, J.T., Moraga, C.: Pascal matrices, Reed-Muller expressions and Reed-Muller error correcting codes, Zbornik Radova, Matematički institut, Vol. 18 (26), 2015, 145–172.

    Google Scholar 

  38. Stankovi c, R. S., Astola, J. T., Moraga, C., Gajić, D. B.: Constant geometry algorithms for Galois field expressions and their implementation on GPUs, Proc. 44th IEEE Int. Symp. on Multiple-Valued Logic, Bremen, Germany, May 19–21, 2014, 79–84.

    Google Scholar 

  39. Stanković, R.S., Butzer, P.L., Schipp, F., Wade, W.R., Su, W., Endow, Y., Fridli, S., Golubov, B.I., Pichler, F., Onneweer, K.C.W.: Dyadic Walsh Analysis from 1924 Onwards, Walsh-Gibbs-Butzer Dyadic Differentiation in Science, Vol. 1 Foundations, A Monograph Based on Articles of the Founding Authors, Reproduced in Full, Atlantis Studies in Mathematics for Engineering and Science, Vol. 12, Atlantis Press/Springer, 2015.

    Google Scholar 

  40. Stanković, R.S., Moraga, C., Astola, J.T.: Fourier Analysis on Finite Non-Abelian Groups with Applications in Signal Processing and System Design, Wiley/IEEE Press, 2005.

    Google Scholar 

  41. Stanković, R.S., Moraga, C.: Fast algorithms for detecting some properties of multiple-valued functions, Proc. 14th Int. Symp. on Multiple-valued Logic, Winnipeg, Canada, May 1984, 29–31.

    Google Scholar 

  42. Stanković, R.S., Moraga, C.: Reed-Muller-Fourier expansions over Galois fields of prime cardinality, U. Kebschull, E. Schubert, W. Rosenstiel, Eds., Proc. IFIP W.10.5 Workshop on Application of Reed-Muller expansion in Circuit Design, 16.-17.9.1993, Hamburg, Germany, 115–124.

    Google Scholar 

  43. Stanković, R.S., Moraga, C.:An algebraic transform for prime-valued functions, Proc. 5th Int. Workshop on Spectral Techniques, 15.-17.3.1994, Beijing, China, 205–209.

    Google Scholar 

  44. Stanković, R.S., Stanković, M., Moraga, C., Sasao, T.:The calculation of Reed-Muller-Fourier coefficients of multiple-valued functions through multiple-place decision diagrams, Proc. 24th Int. Symp. on Multiple-valued Logic, Boston, Massachusetts, USA, 22.-25.5.1994, 82–88.

    Google Scholar 

  45. Thomas, L.H.: Using a computer to solve problems in physics, Application of Digital Computers, Boston, Mass., Ginn, 1963.

    Google Scholar 

  46. Yanushkevich, S.N.: Logic Differential Calculus in Multi-Valued Logic Design, Techn. University of Szczecin Academic Publishers, Poland, 1998.

    Google Scholar 

  47. Yanushkevich, S.N., Miller, D.M., Shmerko, V.P., Stanković, R.S.: Decision Diagram Techniques for Micro- and Nanoelectronic Design Handbook, CRC Press, Taylor & Francis, 2006.

    Google Scholar 

  48. Zhang, Z., Wang, X.: A factorization of the symmetric Pascal matrix involving the Fibonacci matrix, Discrete Applied Mathematics, Vol. 155, 2007, 2371–2376.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radomir S. Stanković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stanković, R.S. (2017). The Reed-Muller-Fourier Transform—Computing Methods and Factorizations. In: Seising, R., Allende-Cid, H. (eds) Claudio Moraga: A Passion for Multi-Valued Logic and Soft Computing. Studies in Fuzziness and Soft Computing, vol 349. Springer, Cham. https://doi.org/10.1007/978-3-319-48317-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48317-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48316-0

  • Online ISBN: 978-3-319-48317-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics