Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 349))

Abstract

When, in February 2008, I visited the European Centre for Soft Computing (ECSC) in Mieres Asturias, Spain, for the first time to give a talk, I stayed for about a week. It was Enric Trillas who extended the invitation, and it was Claudio Moraga who made my first weekend in Asturias—this then unknown and foreign landscape—enjoyable. One of the first places of interest he showed me was the old church of San Julián de los Prados, or Santullano (built between the years 812 and 842 AD) in Oviedo’s suburb Pumarí, close to the A-6 motorway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are other properties of classical logics that we don’t consider here: Monotonicity and Idempotency of entailment, Commutativity of conjunction, De Morgan duality, double negative elimination, and the principle of explosion (ex falso (sequitur) quodlibet, “from falsehood, anything (follows).”

  2. 2.

    Aristotle said in On Interpretation [1] that of two contradictory propositions one must be true, and the other false—(Contradictory propositions are propositions where one proposition is the negation of the other.) Russell and Whitehead stated this principle as a theorem of propositional logic in the Principia Mathematica.

  3. 3.

    Ich kann ohne Widerspruch annehmen, dass meine Anwesenheit in Warschau in einem bestimmten Zeitmoment des nächsten Jahres, z.B. mittags den 21. Dezember, heutzutage weder im positiven noch im negativen Sinne entschieden ist. Es ist somit möglich, aber nicht notwendig, dass ich zur angegebenen Zeit in Warschau anwesend sein werde. Unter diesen Voraussetzungen kann die Aussage: “Ich werde mittags den 21. Dezember nächsten Jahres in Warschau anwesend sein”, heutzutage weder wahr noch falsch sein. Denn ware sie heutzutage wahr, so müsste meine zukünftige Anwesenheit in Warschau notwendig sein, was der Voraussetzung widerspricht; und wäre sie heutzutage falsch, so müsste meine zukünftige Anwesenheit in Warschau unmöglich sein, was ebenfalls der Voraussetzung widerspricht. Der betrachtete Satz ist daher heutzutage weder wahr noch falsch und muss einen dritten, von “0” oder dem Falschen und von “1” oder dem Wahren verschiedenen Wert haben. Diesen Wert können wir mit “1 / 2” bezeichnen; es ist eben ‘das Mögliche’, das als dritter Wert neben “das Falsche” und “das Wahre” an die Seite tritt. Diesem Gedankengang verdankt das dreiwertige System des Aussagenkalküls seine Entstehung. [20, p. 165].

  4. 4.

    “Es war mir von vornherein klar, dass unter allen mehrwertigen Systemen nur zwei eine philosophische Bedeutung beanspruchen können: das dreiwertige und das unendlichwertige System. Denn werden die von “0” und “1” verschiedenen Werte als “das Mögliche” gedeutet, so konnen aus guten Gründen nur zwei Fälle unterschieden werden: entweder nimmt man an, dass das Mögliche keine Gradunterschiede aufweist, und dann erhält man das dreiwertige System; oder man setzt das Gegenteil voraus, und dann ist es am natürlichsten ebenso wie in der Wahrscheinlichkeitsrechnung anzunehmen, dass unendlich viele Gradunterschiede des Möglichen bestehen, was zum unendlichwertigen Aussagenkalkul führt. Ich glaube, dass gerade dieses letztere System vor allen anderen den Vorzug verdient. Leider ist dieses System noch nicht genau untersucht; insbesondere ist auch das Verhältnis des unendlichwertigen Systems zur Wahrscheinlichkeitsrechnung noch nicht geklärt.” [22, p. 173].

  5. 5.

    For a detailed presentation of the history of Fuzzy Set Theory see [33].

  6. 6.

    Here we need the definition of the “orthocomplement” \(x^\perp \) of the element x: This element satisfies (1) the complement law \(x^\perp \vee x = 1\) and \(x^\perp \wedge x = 0\); (2) the involution law \(x^{\perp \perp } = x\); (3) the order reserving law if \(x\le y\) then \(y^\perp \le x\).

  7. 7.

    The lecture notes of this course Physical Information Theory (1959–60) were published under the title “Algebra of Observations” but not until 1966 unfortunately [38].

References

  1. Aristotle: On Interpretation, Translated by E. M. Edghill: https://ebooks.adelaide.edu.au/a/aristotle/interpretation/.

  2. Birkhoff, Garett, von Neumann, John: The Logic of Quantum Mechanics, Annals of Mathematics, Series 2, vol. 37, 1936, p. 823 ff.

    Google Scholar 

  3. Born, Max: Zur Quantenmechanik der Stoßvorgänge, Zeitschrift für Physik, vol. 37, 1926, pp. 863–867.

    Google Scholar 

  4. Born, Max: Das Adiabatenprinzip in der Quantenmechanik, Zeitschrift fär Physik, vol. 40, 1926, pp. 167–191.

    Google Scholar 

  5. Goguen, Joseph A.: L-Fuzzy Sets, Journal of Mathematical Analysis and Applications, vol. 18, 1967, pp. 145–174.

    Google Scholar 

  6. Goguen, Joseph A.: Categories of Fuzzy Sets: Applications of a Non-Cantorian Set Theory, Ph.D. Dissertation, University of California at Berkeley, June 1968.

    Google Scholar 

  7. Goguen, Joseph A.: The Logic of Inexact Concepts, Synthese, vol. 19, 1969, pp. 325–373.

    Google Scholar 

  8. Gudder, Stanley P.: Quantum Probability, Academic Press: San Diego, 1988.

    Google Scholar 

  9. Haack, Susan: Deviant Logic, Chicago, Ill.: Cambridge University Press, 1974.

    MATH  Google Scholar 

  10. Haack, Susan: Deviant Logic, Fuzzy Logic: Beyond The Formalism, Chicago, Ill.: University of Chicago Press, 1996.

    MATH  Google Scholar 

  11. Husimi, Kodi: Studies in the Foundations of Quantum Mechanics, Proceedings of the Physico-Mathematical Society of Japan, vol. 19, 1937, pp. 766–789.

    MATH  Google Scholar 

  12. Jammer, Max: The Philosophy of Quantum Mechanics. The Interpretations of QM in Historical Perspective, John Wileys and Sons, 1974.

    Google Scholar 

  13. Kleene, Stephen C.: On a notation for ordinal numbers, The Journal of Symbolic Logic, vol. 3, 1938, pp. 150–155.

    Article  MATH  Google Scholar 

  14. Kleene, Stephen C.: Introduction to Metamathematics, Amsterdam: North-Holland, 1952.

    Google Scholar 

  15. Lakoff, George: Hedges: A Study in Meaning Criteria and the Logic of Fuzzy Concepts, Journal of Philosophical Logic, vol. 2, 1973, pp. 458–508.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lowenschuss, Oscar: Multi-Valued Logic in Sequential Machines. Ph.D. Thesis. School of Engineering, Columbia University, New York, 1958.

    Google Scholar 

  17. Lowenschuss, Oscar: A Comment on Pattern Redundancy, IRE Transactions on Information Theory, December 1958, p. 127.

    Google Scholar 

  18. Lowenschuss, Oscar: Restoring Organs in Redundant Automata, Information and Control, Vol. 2, 1959, pp. 113–136.

    Article  MathSciNet  MATH  Google Scholar 

  19. Łukasiewicz, Jan: O logice trójwartościowej (in Polish), Ruch filozoficzny, vol. 5, 1920, pp. 170–171. English translation: On three-valued logic, in: Borkowski, L. (ed.), Selected works by Jan Łukasiewicz, Amsterdam: North–Holland, 1970, pp. 87–88.

    Google Scholar 

  20. Łukasiewicz, Jan: Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls, Comptes rendus de séances de la Société de Sciences et des Lettres de Varsovie. Cl. iii, vol. 23, 1930, pp. 51–77.

    Google Scholar 

  21. Łukasiewicz, Jan: Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic. Oxford: Clarendon Press, 1951. 2nd, enlarged ed., 1957.

    Google Scholar 

  22. Łukasiewicz, Jan: Selected Works, ed. L. Borkowski. Amsterdam: North-Holland, 1970.

    Google Scholar 

  23. Mackey, George W. Mathematical Foundations of Quantum Mechanics, New York: W. A. Benjamin, 1963.

    MATH  Google Scholar 

  24. von Neumann, John: Mathematische Begründung der Quantenmechanik, Güttingen: Nachr. Ges. Wiss., Math.-phys. Klasse, 1927, pp. 1–57.

    Google Scholar 

  25. von Neumann, John: Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Princeton, New Jersey, 1955.

    Google Scholar 

  26. Peirce, Charles S.: The New Elements of Mathematics, Eisele, Carolyn (ed.): Volume IV – Mathematical Philosophy, Chapter VI – The Logical Algebra of Boole, The Hague: Mouton Publishers, Paris: Humanities Press, N. J.: Atlantic Highlands, 1976, pp. 106–115.

    Google Scholar 

  27. Pitowski, Itamar: Quantum Probability, Quantum Logic, Lecture Notes in Physics, Berlin: 1989.

    Google Scholar 

  28. Post, Emil L.: Introduction to a General Theory of Elementary Propositions, American Journal of Mathematics, vol. 43, 1921, pp. 163–185.

    Article  MathSciNet  MATH  Google Scholar 

  29. Russell, Bertrand: Principles of Mathematics, 1903; 2nd edition: W. W. Norton & Company 1938.

    Google Scholar 

  30. Whitehead, Alfred N.; Russell, Bertrand: Principia mathematica 1 (1 ed.) 1910; 2 (1 ed.), 1912; 3 (1 ed.), 1913, Cambridge: Cambridge University Press.

    Google Scholar 

  31. Seising, Rudolf: Interview with L. A. Zadeh on July, 26, 2000, University of California, Berkeley, Soda Hall.

    Google Scholar 

  32. Seising, Rudolf: Interview with L. A. Zadeh on June 16, 2001, University of California, Berkeley, Soda Hall.

    Google Scholar 

  33. Seising, Rudolf: The Fuzzification of Systems. The Genesis of Fuzzy Set Theory and Its Initial Applications – Developments up to the 1970s, Berlin, New York, [et al.]: Springer 2007.

    Google Scholar 

  34. Seising, Rudolf: General Systems, classical systems, quantum systems, and fuzzy systems: an introductory survey, International Journal of General Systems (Special Issue: Fuzzy and Quantum Systems, Rudolf Seising (guest editor), vol. 40 (1), 2011), pp. 1–9.

    Google Scholar 

  35. Suppes, Patrick: Probability Concepts in Quantum Mechanics, Philosophy of Science, vol. 28, 1961, pp. 378–389.

    Article  Google Scholar 

  36. Suppes, Patrick: The Probabilistic Argument for a Non-Classical Logic of Quantum Mechanics, Philosophy of Science, vol. 33, 1966, pp. 14–21.

    Article  MathSciNet  Google Scholar 

  37. Ulrich, Werner: Nonbinary Error Correction Codes, Bell Systems Technical Journal, November 1957, pp. 1341–1142.

    Google Scholar 

  38. Watanabe, Satosi: Algebra of Observation, Progress of Theoretical Physics, Suppl. Nos. 37-38, 1966, pp. 350–367.

    Google Scholar 

  39. Watanabe, Satosi: Modified Concepts of Logic, Probability, and Information Based on Generalized Continuous Characteristic Function, Information and Control, vol. 15, 1069, pp. 1–21.

    Google Scholar 

  40. Zadeh, Lotfi A.: Thinking Machines. A New Field in Electrical Engineering, Columbia Engineering Quarterly, January 1950, pp. 12–30.

    Google Scholar 

  41. Zadeh, Lotfi A.: From Circuit Theory to System Theory, Proceedings of the IRE, vol. 50, 1962, pp. 856–865.

    Article  MathSciNet  Google Scholar 

  42. Zadeh, Lotfi A.: Fuzzy Sets, Information and Control, vol. 8, 1965, pp. 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  43. Zadeh, Lotfi A.: Fuzzy Sets and Systems. In: J. Fox (ed.): System Theory, Microwave Res. Inst. Symp. Series XV, Brooklyn, New York: Polytechnic Press, 1965, pp. 29–37.

    Google Scholar 

Download references

Acknowledgments

I would like to thank Mark Winstanley for proofreading and suggestions for improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Seising .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Seising, R. (2017). From Multi-valued Logics to Fuzzy Logic. In: Seising, R., Allende-Cid, H. (eds) Claudio Moraga: A Passion for Multi-Valued Logic and Soft Computing. Studies in Fuzziness and Soft Computing, vol 349. Springer, Cham. https://doi.org/10.1007/978-3-319-48317-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48317-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48316-0

  • Online ISBN: 978-3-319-48317-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics