Skip to main content

Biorefinery Sustainability Analysis

  • Chapter
  • First Online:
Biorefineries

Part of the book series: Lecture Notes in Energy ((LNEN,volume 57))

Abstract

This chapter deals with sustainability analysis of biorefinery systems in terms of environmental and socio-economic indicators . Life cycle analysis has methodological issues related to the functional unit (FU), allocation , land use and biogenic carbon neutrality of the reference system and of the biorefinery-based system. Socio-economic criteria and indicators used in sustainability frameworks assessment are presented and discussed. There is not one single methodology that can aptly cover the synergies of environmental, economic, social and governance issues required to assess the sustainable production and use of bioenergy systems. The perfect metric for environmental issues is not yet established and some researchers prefer to avoid high levels of uncertainty in life cycle assessment (LCA) methodology and adopt more physically quantifying methods like the annual basis carbon (ABC) method presented here. In addition to establishing the perfect metric, there are three types of uncertainty when building scenarios with biorefinery-based systems that must be regarded to have a more holistic point of view. This uncertainty is at the level of the concept , of the configuration and of the operation .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accardi DS, Bubbico R, Di Palma L, Pietrangeli B (2013) Environmental and safety aspects of integrated biorefineries (IBR) in Italy. In: Chemical engineering transactions, vol 32. pp 169–174

    Google Scholar 

  • Afful-Koomson T (2012) Governance challenges for promoting the green economy in Africa. In: Puppim de Oliveira JA (ed) Green economy and good governance for sustainable development: opportunities, promises and concerns. United Nations University Press, Tokyo, pp 136–160

    Google Scholar 

  • Ahlgren S, Björklund A, Ekman A, Karlsson H, Berlin J, Börjesson P, Ekvall T, Finnveden G, Janssen M, Strid I (2013) LCA of biorefineries identification of key issues and methodological recommendations. Sweden

    Google Scholar 

  • Benoit-Norris C, Cavan DA, Norris G (2012) Identifying social impacts in product supply chains: overview and application of the social hotspot database. Sustainability 4:1946–1965. doi:10.3390/su4091946

    Article  Google Scholar 

  • Bernardi A, Giarola S, Bezzo F (2013) Spatially explicit multiobjective optimization for the strategic design of first and second generation biorefineries including carbon and water footprints. Ind Eng Chem Res 52:7170–7180. doi:10.1021/ie302442j

  • BIOCORE (2014) Integrated assessment of overall sustainability

    Google Scholar 

  • Black MJ, Whittaker C, Hosseini SA, Diaz-Chavez R, Woods J, Murphy RJ (2011) Life cycle assessment and sustainability methodologies for assessing industrial crops, processes and end products. Ind Crops Prod 34:1332–1339. doi:10.1016/j.indcrop.2010.12.002

    Article  Google Scholar 

  • Bradley T, Maga D, Antón S (2015) Unified approach to life cycle assessment between three unique algae biofuel facilities. Appl Energy 154:1052–1061. doi:10.1016/j.apenergy.2014.12.087

  • Brander M, Tipper R, Hutchison C, Davis G (2008) Consequential and attributional approaches to LCA: a Guide to policy makers with specific reference to greenhouse gas LCA of biofuels. Econom Press, pp 1–14

    Google Scholar 

  • Brundtland GH (1987) Our common future: report of the world commission on environment and development. Med Confl Surviv 4:300. doi:10.1080/07488008808408783

    Google Scholar 

  • Cheali P, Quaglia A, Gernaey KV, Sin G (2014) Effect of market price uncertainties on the design of optimal biorefinery systems-a systematic approach. Ind Eng Chem Res 53:6021–6032. doi:10.1021/ie4042164

    Article  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421. doi:10.1016/j.enconman.2010.01.015

    Article  Google Scholar 

  • Cherubini F, Jungmeier G (2010) LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int J Life Cycle Assess 15:53–66. doi:10.1007/s11367-009-0124-2

    Article  Google Scholar 

  • Dale VH, Efroymson RA, Kline KL, Langholtz MH, Leiby PN, Oladosu GA, Davis MR, Downing ME, Hilliard MR (2013) Indicators for assessing socioeconomic sustainability of bioenergy systems: a short list of practical measures. Ecol Indic 26:87–102. doi:10.1016/j.ecolind.2012.10.014

    Article  Google Scholar 

  • Dalgaard T (2012) Concepts for a multi-criteria sustainability assessment of a new more biobased economy in rural production landscapes

    Google Scholar 

  • DeCicco J, Krishnan R (2015) Annual Basis Carbon (ABC) analysis of biofuel production at the facility level. Ann arbor

    Google Scholar 

  • Degerickx J, Almeida J, Moonen PCJ, Vervoort L, Muys B, Achten WMJ (2015) Impact of land-use change to Jatropha bioenergy plantations on biomass and soil carbon stocks: a field study in Mali. GCB Bioenergy. doi:10.1111/gcbb.12288

    Google Scholar 

  • Diaz-Chavez R (2014a) WP7 Sustainability assessment and socio-economic methodology. Biocore project

    Google Scholar 

  • Diaz-Chavez R (2014b) Indicators for socio-economic sustainability assessment. In: Rutz D, Janssen R (eds) Socio-economic impacts of bioenergy production. Springer International Publishing, Cham, pp 17–37

    Chapter  Google Scholar 

  • Diaz-Chavez RA (2011) Assessing biofuels: aiming for sustainable development or complying with the market? Energy Policy 39:5763–5769. doi:10.1016/j.enpol.2011.03.054

    Article  Google Scholar 

  • Diaz-Chavez R, Colangeli M, Morese M, Fallot A, Azanha M, Sibanda L, Mapako M (2015) Social considerations. In: Souza GM, Victoria R, Joly C, Verdade L (eds) Bioenergy & sustainability: bridging the gaps. SCOPE, Paris, pp 514–539

    Google Scholar 

  • Diaz-Chavez R, Vuohelainen A (2014) Test auditing of socio-economic indicators for biofuel production. Socio-economic impacts of bioenergy production. Springer International Publishing, Cham, pp 39–58

    Chapter  Google Scholar 

  • Efroymson RA, Dale VH, Kline KL, McBride AC, Bielicki JM, Smith RL, Parish ES, Schweizer PE, Shaw DM (2013) Environmental indicators of biofuel sustainability: what about context? Environ Manage 51:291–306. doi:10.1007/s00267-012-9907-5

    Article  Google Scholar 

  • FAO (2012) Voluntary guidelines on the responsible governance of tenure of land, fisheries and forests in the context of national food security

    Google Scholar 

  • GBEP (2012) The global bioenergy partnership sustainability indicators for bioenergy. Rome

    Google Scholar 

  • Giarola S, Zamboni A, Bezzo F (2011) Spatially explicit multi-objective optimisation for design and planning of hybrid first and second generation biorefineries. Comput Chem Eng 35:1782–1797. doi:10.1016/j.compchemeng.2011.01.020

  • Gibson RB, Hassan S, Holtz S, Tansey J, Whitelaw G (2005) Sustainability assessment: criteria and processes

    Google Scholar 

  • GRI (2014) Sustainability reporting database

    Google Scholar 

  • Hamelinck C (2013) Land grabs for biofuels driven by EU biofuels policies

    Google Scholar 

  • Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab Eng Syst Saf 81:23–69

    Article  Google Scholar 

  • Hennecke AM, Faist M, Reinhardt J, Junquera V, Neeft J, Fehrenbach H (2013) Biofuel greenhouse gas calculations under the European renewable energy directive—a comparison of the BioGrace tool versus the tool of the roundtable on sustainable biofuels. Appl Energy 102:55–62. doi:10.1016/j.apenergy.2012.04.020

    Article  Google Scholar 

  • Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2009) Water footprint manual state of the art 2009. Water Footpr Netw 131

    Google Scholar 

  • Iman RL, Conover WJ (1982) A distribution-free approach to inducing rank correlation among input variables. Commun Stat-Simul Comput 11:311–334. doi:10.1080/03610918208812265

    Article  MATH  Google Scholar 

  • ISO (2006a) ISO 14040: Environmental management—life cycle assessment—principles and framework. Environ Manage 3:28. doi:10.1002/jtr

    Google Scholar 

  • ISO (2006b) ISO 14044:2006. Environmental management – life cycle assessment. Requirements and Guidelines. International Organization for Standardization

    Google Scholar 

  • Johnson F, Seebaluck V (2012) Bioenergy for sustainable development and international competitiveness. The role of sugar cane in Africa. Earthsan, London

    Google Scholar 

  • Jourabchi SA, Gan S, Ng HK (2014) Pyrolysis of Jatropha curcas pressed cake for bio-oil production in a fixed-bed system. Energy Convers Manag 78:518–526. doi:10.1016/j.enconman.2013.11.005

    Article  Google Scholar 

  • Jungmeier G (2014) The biorefinery fact sheet. Version 1.0, 2014-09-19

    Google Scholar 

  • Kadam KL, Rydholm EC, McMillan JD (2004) Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechnol Prog 20:698–705. doi:10.1021/bp034316x

    Article  Google Scholar 

  • Keller H, Rettenmaier N, Reinhardt GA (2015) Integrated life cycle sustainability assessment - A practical approach applied to biorefineries. Appl Energy 154:1072–1081. doi:10.1016/j.apenergy.2015.01.095

    Article  Google Scholar 

  • Krishnan MS, Ho NW, Tsao GT (1999) Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400 (pLNH33). Appl Biochem Biotechnol 77–79:373–388. doi:10.1385/ABAB:78:1-3:373

    Article  Google Scholar 

  • Larsen J, Haven MØ, Thirup L (2012) Inbicon makes lignocellulosic ethanol a commercial reality. Biomass Bioenergy 46:36–45. doi:10.1016/j.biombioe.2012.03.033

    Article  Google Scholar 

  • Lavarack BP, Griffin GJ, Rodman D (2002) The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy 23:367–380. doi:10.1016/S0961-9534(02)00066-1

    Article  Google Scholar 

  • Cotula Lorenzo, Nat Dyer SV (2008) Fuelling exclusion? The biofuels boom and poor people’s access to land. FAO and IIED, London

    Google Scholar 

  • Macedo IC, Seabra JEA, Silva JEAR (2008) Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 32:582–595. doi:10.1016/j.biombioe.2007.12.006

    Article  Google Scholar 

  • Mathai M, Parayil G (2013) Towards equity and sustainability in the “green economy.” In: Puppim de Oliveira JA (ed) Green economy and good governance for sustainable development: opportunities, promises and concerns. United Nations University Press, Tokyo

    Google Scholar 

  • McCormick K, Kautto N (2013) The Bioeconomy in Europe: an overview. Sustain 5:2589–2608. doi:10.3390/su5062589

    Article  Google Scholar 

  • Méndez L, Rojas J, Izaguirre C, Contreras B, Gómez R (2014) Jatropha curcas leaves analysis, reveals it as mineral source for low sodium diets. Food Chem 165:575–577. doi:10.1016/j.foodchem.2014.05.124

    Article  Google Scholar 

  • Morales-Rodriguez R, Meyer AS, Gernaey KV, Sin G (2012) A framework for model-based optimization of bioprocesses under uncertainty: lignocellulosic ethanol production case. Comput Chem Eng 42:115–129. doi:10.1016/j.compchemeng.2011.12.004

    Article  Google Scholar 

  • Murata K, Liu Y, Inaba M, Takahara I (2012) Catalytic fast pyrolysis of jatropha wastes. J Anal Appl Pyrolysis 94:75–82. doi:10.1016/j.jaap.2011.11.008

    Article  Google Scholar 

  • Ness B, Urbel-Piirsalu E, Anderberg S, Olsson L (2007) Categorising tools for sustainability assessment. Ecol Econ 60:498–508

    Article  Google Scholar 

  • OECD (2011) Strategic environmental assessment and biofuel development. Paris

    Google Scholar 

  • Ostrom E (2000) Collective action and the evolution of social norms. J Econ Perspect 14:137–158

    Article  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327. doi:10.1046/j.1365-2486.2000.00308.x

    Article  Google Scholar 

  • Prunescu RM, Blanke M, Jakobsen JG, Sin G (2015) Dynamic modeling and validation of a biomass hydrothermal pretreatment process-a demonstration scale study. AIChE J 61:4235–4250. doi:10.1002/aic.14954

    Article  Google Scholar 

  • Prunescu RM, Blanke M, Sin G (2013a) Modelling and L < inf > 1</inf > adaptive control of pH in bioethanol enzymatic process. In: 2013 American control conference. IEEE, pp 1888–1895

    Google Scholar 

  • Prunescu RM, Blanke M, Sin G (2013b) Modelling and L1 adaptive control of temperature in biomass pretreatment. In: 52nd IEEE conference on decision and control. IEEE, pp 3152–3159

    Google Scholar 

  • Quaglia A, Sarup B, Sin G, Gani R (2013) A systematic framework for enterprise-wide optimization: synthesis and design of processing networks under uncertainty. Comput Chem Eng 59:47–62. doi:10.1016/j.compchemeng.2013.03.018

    Article  Google Scholar 

  • Reed MS, Graves A, Dandy N, Posthumus H, Hubacek K, Morris J, Prell C, Quinn CH, Stringer LC (2009) Who’s in and why? a typology of stakeholder analysis methods for natural resource management. J Environ Manage 90:1933–1949. doi:10.1016/j.jenvman.2009.01.001

    Article  Google Scholar 

  • Rosillo-Calle F, Johnson F (2010) Food versus fuel. An informed introduction to biofuels. ZED Books, London

    Google Scholar 

  • Rutz D, Janssen R (eds) (2014) Socio-economic impacts of bioenergy production. Springer International Publishing, Cham

    Google Scholar 

  • Sacramento-Rivero JC (2012) A methodology for evaluating the sustainability of biorefineries: framework and indicators. Biofuels, Bioprod Biorefining 6:32–44. doi:10.1002/bbb.335

    Article  Google Scholar 

  • Sandin G, Røyne F, Berlin J, Peters GM, Svanström M (2015) Allocation in LCAs of biorefinery products: implications for results and decision-making. J Clean Prod 93:213–221. doi:10.1016/j.jclepro.2015.01.013

    Article  Google Scholar 

  • Scarlat N, Dallemand J-F, Monforti-Ferrario F, Banja M, Motola V (2015) Renewable energy policy framework and bioenergy contribution in the European Union—an overview from national renewable energy action plans and progress reports. Renew Sustain Energy Rev 51:969–985. doi:10.1016/j.rser.2015.06.062

    Article  Google Scholar 

  • Schmitz S, Dawson B, Spannagle M, Thomson F, Koch J, Eaton R (2000) The Greenhouse gas protocol—a corporate accounting and reporting standard, revised edition. GHG Protoc Corp Account Report Stand 9:116

    Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. Croplands for biofuels increases greenhouse gases through emissions from land-use change. Science (80-) 319:1238–1240

    Google Scholar 

  • Silva C (2011) Electric and plug-in hybrid vehicles influence on CO2 and water vapour emissions. Int J Hydrogen Energy 36:13225–13232. doi:10.1016/j.ijhydene.2011.07.023

    Article  Google Scholar 

  • Sin G, Gernaey KV, Neumann MB, van Loosdrecht MCM, Gujer W (2011) Global sensitivity analysis in wastewater treatment plant model applications: prioritizing sources of uncertainty. Water Res 45:639–651. doi:10.1016/j.watres.2010.08.025

    Article  Google Scholar 

  • Sin G, Meyer AS, Gernaey KV (2010) Assessing reliability of cellulose hydrolysis models to support biofuel process design-Identifiability and uncertainty analysis. Comput Chem Eng 34:1385–1392. doi:10.1016/j.compchemeng.2010.02.012

    Article  Google Scholar 

  • Slepetiene a, Slepetys J, Liaudanskiene I (2008) Standard and modified methods for soil organic carbon determination in agricultural soils. Agron Res 6:543–554

    Google Scholar 

  • Social hotspot organisation (2014). Social hotspot database. http://socialhotspot.org/. Accessed May 2014

  • Solomon BD, Bailis R (eds) (2014) Sustainable development of biofuels in Latin America and the caribbean. Springer New York, New York, NY

    Google Scholar 

  • Souza SP, Gopal AR, Seabra JEA (2015) Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery. Energy 81:373–381. doi:10.1016/j.energy.2014.12.050

    Article  Google Scholar 

  • Sukumara S, Faulkner W, Amundson J, Badurdeen F, Seay J (2014) A multidisciplinary decision support tool for evaluating multiple biorefinery conversion technologies and supply chain performance. Clean Technol Environ Policy 16:1027–1044. doi:10.1007/s10098-013-0703-6

  • Taelman SE, Sfez S (2015) Environmental Life Cycle Assessment (LCA) of algae production in NorthWest Europe (NWE)-EnAlgae project

    Google Scholar 

  • Tristan RB, Robert B, Vonnie E (2015) SBE special section: lignocellulosic Biofuels—commercial-scale production of lignocellulosic biofuels. CEP Mag, AIChE

    Google Scholar 

  • UNEP Setac Life Cycle Initiative (2009) Guidelines for Social Life Cycle Assessment of Products

    Google Scholar 

  • Valdivia S, Ugaya CML, Hildenbrand J, Traverso M, Mazijn B, Sonnemann G (2013) A UNEP/SETAC approach towards a life cycle sustainability assessment—Our contribution to Rio + 20. Int J Life Cycle Assess 18:1673–1685. doi:10.1007/s11367-012-0529-1

    Article  Google Scholar 

  • Wolf M-A, Pant R, Chomkhamsri K, Sala S, Pennington D (2012) The International Reference Life Cycle Data System (ILCD) Handbook

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla A. M. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Silva, C.A.M., Prunescu, R.M., Gernaey, K.V., Sin, G., Diaz-Chavez, R.A. (2017). Biorefinery Sustainability Analysis. In: Rabaçal, M., Ferreira, A., Silva, C., Costa, M. (eds) Biorefineries. Lecture Notes in Energy, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-48288-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48288-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48286-6

  • Online ISBN: 978-3-319-48288-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics