Skip to main content

Luminescent Nanoparticles for Chemical Sensing and Imaging

  • Chapter
  • First Online:
Reviews in Fluorescence 2016

Part of the book series: Reviews in Fluorescence ((RFLU))

Abstract

The application of molecular fluorescent probes in biological samples is often hampered by low local brightness, interferences from the chemical environment and limited photostability particularly of far red and NIR dyes. Nevertheless, various fluorescent probes are available for the staining of cells, cell membranes and organelles. In addition, in order to monitor intracellular processes and dysfunctions, probes are required that respond to ubiquitous chemical parameters regulating cellular and physical function such as pH, pO2 and Ca2+. This review is focused on the recent progress of our teams in the design, fabrication and application of photoluminescent nanoprobes for chemical sensing and imaging. Different examples are presented that highlight the diverseness of nanocarrier materials that can be applied to intracellular and also to in vivo imaging ranging from polymers to semiconductor or photon upconversion nanocrystals. In this regard, the advantages of nanoprobes compared to molecular probes are discussed. Particular attention is paid to ratiometric dual wavelength nanosensors that enable intrinsic referenced measurements. Furthermore, methods and spectroscopic tools for the characterization of the surface functionalization of nanoparticles and for quantum yield or brightness measurements will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burns A, Sengupta P, Zedayko T, Baird B, Wiesner U (2006) Core/Shell fluorescent silica nanoparticles for chemical sensing: towards single-particle laboratories. Small 2(6):723–726

    Article  CAS  PubMed  Google Scholar 

  2. Shang L, Nienhaus GU (2013) Small fluorescent nanoparticles at the nano–bio interface. Mater Today 16(3):58–66

    Article  CAS  Google Scholar 

  3. Lee Y-EK, Kopelman R (2009) Optical nanoparticle sensors for quantitative intracellular imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(1):98–110

    Article  CAS  PubMed  Google Scholar 

  4. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  5. Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM (2011) Toxicology and clinical potential of nanoparticles. Nano Today 6(6):585–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koo H et al (2011) Nanoprobes for biomedical imaging in living systems. Nano Today 6(2):204–220

    Article  CAS  Google Scholar 

  7. Clark HA, Kopelman R, Tjalkens R, Philbert MA (1999) Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors. Anal Chem 71(21):4837–4843

    Article  CAS  PubMed  Google Scholar 

  8. Søndergaard RV, Henriksen JR, Andresen TL (2014) Design, calibration and application of broad-range optical nanosensors for determining intracellular pH. Nat Protoc 9(12):2841–2858

    Article  PubMed  CAS  Google Scholar 

  9. Hornig S et al (2008) Biocompatible fluorescent nanoparticles for pH-sensoring. Soft Matter 4(6):1169–1172

    Article  CAS  Google Scholar 

  10. Schulz A, Wotschadlo J, Heinze T, Mohr GJ (2010) Fluorescent nanoparticles for ratiometric pH-monitoring in the neutral range. J Mater Chem 20(8):1475–1482

    Article  CAS  Google Scholar 

  11. Peng J et al (2007) Noninvasive monitoring of intracellular pH change induced by drug stimulation using silica nanoparticle sensors. Anal Bioanal Chem 388(3):645–654

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y-P et al (2012) Surface charge effect in intracellular localization of mesoporous silica nanoparticles as probed by fluorescent ratiometric pH imaging. RSC Adv 2(3):968–973

    Article  CAS  Google Scholar 

  13. Cao Y, Lee Koo Y-E, Kopelman R (2004) Poly(decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples. Analyst 129(8):745–750

    Article  CAS  PubMed  Google Scholar 

  14. Koo Y-EL et al (2004) Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors. Anal Chem 76(9):2498–2505

    Article  CAS  PubMed  Google Scholar 

  15. Wu C, Bull B, Christensen K, McNeill J (2009) Ratiometric single-nanoparticle oxygen sensors for biological imaging. Angew Chem Int Ed 48(15):2741–2745

    Article  CAS  Google Scholar 

  16. Wang X-d et al (2011) Self-referenced RGB colour imaging of intracellular oxygen. Chem Sci 2(5):901–906

    Article  CAS  Google Scholar 

  17. Sánchez-Martín RM, Cuttle M, Mittoo S, Bradley M (2006) Microsphere-based real-time calcium sensing. Angew Chem Int Ed 45(33):5472–5474

    Article  CAS  Google Scholar 

  18. Kim G, Lee Y-EK XH, Philbert MA, Kopelman R (2010) Nanoencapsulation method for high selectivity sensing of hydrogen peroxide inside live cells. Anal Chem 82(6):2165–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schäferling M (2012) The art of fluorescence imaging with chemical sensors. Angew Chem Int Ed 51(15):3532–3554

    Article  CAS  Google Scholar 

  20. Schäferling M (2016) Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(3):378–413

    Article  PubMed  CAS  Google Scholar 

  21. Schäferling M, Duerkop A (2008) Intrinsically referenced fluorimetric sensing and detection schemes: methods, advantages and applications. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements I: techniques. Springer, Berlin, Heidelberg, pp 373–414

    Chapter  Google Scholar 

  22. Swanson JA (2002) 1 Ratiometric fluorescence microscopy. In: Methods in microbiology, vol 31, Academic, p 1–18

    Google Scholar 

  23. Tsien RY (1989) Fluorescent probes of cell signaling. Annu Rev Neurosci 12:227–253

    Article  CAS  PubMed  Google Scholar 

  24. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775

    Article  CAS  PubMed  Google Scholar 

  25. Hoffmann K, Behnke T, Drescher D, Kneipp J, Resch-Genger U (2013) Near-infrared-emitting nanoparticles for lifetime-based multiplexed analysis and imaging of living cells. ACS Nano 7(8):6674–6684

    Article  CAS  PubMed  Google Scholar 

  26. Bambot SB, Lakowicz JR, Rao G (1995) Potential applications of lifetime-based, phase-modulation fluorimetry in bioprocess and clinical monitoring. Trends Biotechnol 13(3):106–115

    Article  CAS  PubMed  Google Scholar 

  27. Woods RJ, Scypinski S, Love LJC (1984) Transient digitizer for the determination of microsecond luminescence lifetimes. Anal Chem 56(8):1395–1400

    Article  CAS  PubMed  Google Scholar 

  28. Ballew RM, Demas JN (1989) An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays. Anal Chem 61(1):30–33

    Article  CAS  Google Scholar 

  29. Meier RJ, Fischer LH, Wolfbeis OS, Schäferling M (2013) Referenced luminescent sensing and imaging with digital color cameras: a comparative study. Sensors Actuators B Chem 177:500–506

    Article  CAS  Google Scholar 

  30. Borisov SM, Würth C, Resch-Genger U, Klimant I (2013) New life of ancient pigments: application in high-performance optical sensing materials. Anal Chem 85(19):9371–9377

    Article  CAS  PubMed  Google Scholar 

  31. Huber C, Klimant I, Krause C, Wolfbeis OS (2001) Dual lifetime referencing as applied to a chloride optical sensor. Anal Chem 73(9):2097–2103

    Article  CAS  PubMed  Google Scholar 

  32. Liebsch G, Klimant I, Krause C, Wolfbeis OS (2001) Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing. Anal Chem 73(17):4354–4363

    Article  CAS  PubMed  Google Scholar 

  33. Ko JY et al (2010) pH-sensitive nanoflash for tumoral acidic pH imaging in live animals. Small 6(22):2539–2544

    Article  CAS  PubMed  Google Scholar 

  34. Koo Lee Y-E et al (2010) Near infrared luminescent oxygen nanosensors with nanoparticle matrix tailored sensitivity. Anal Chem 82(20):8446–8455

    Article  CAS  Google Scholar 

  35. Resch-Genger U, Licha K (2011) Probes for optical imaging: new developments. Drug Discov Today 8(2–4):e87–e94

    Google Scholar 

  36. Zhu HG, McShane MJ (2005) Loading of hydrophobic materials into polymer particles: implications for fluorescent nanosensors and drug delivery. J Am Chem Soc 127(39):13448–13449

    Article  CAS  PubMed  Google Scholar 

  37. Behnke T, Würth C, Laux E-M, Hoffmann K, Resch-Genger U (2012) Simple strategies towards bright polymer particles via one-step staining procedures. Dyes Pigments 94(2):247–257

    Article  CAS  Google Scholar 

  38. Napp J et al (2011) Targeted luminescent near-infrared polymer-nanoprobes for in vivo imaging of tumor hypoxia. Anal Chem 83(23):9039–9046

    Article  CAS  PubMed  Google Scholar 

  39. Huber A, Behnke T, Würth C, Jaeger C, Resch-Genger U (2012) Spectroscopic characterization of Coumarin-stained beads: quantification of the number of fluorophores per particle with solid-state 19F-NMR and measurement of absolute fluorescence quantum yields. Anal Chem 84(8):3654–3661

    Article  CAS  PubMed  Google Scholar 

  40. Hennig A, Hatami S, Spieles M, Resch-Genger U (2013) Excitation energy migration and trapping on the surface of fluorescent poly(acrylic acid)-grafted polymer particles. Photochem Photobiol Sci 12(5):729–737

    Article  CAS  PubMed  Google Scholar 

  41. Laux E-M, Behnke T, Hoffmann K, Resch-Genger U (2012) Keeping particles brilliant – simple methods for the determination of the dye content of fluorophore-loaded polymeric particles. Anal Methods 4(6):1759–1768

    Article  CAS  Google Scholar 

  42. Lezhnina MM, Grewe T, Stoehr H, Kynast U (2012) Laponite Blue: Dissolving the Insoluble. Angew Chem Int Ed 51(42):10652–10655

    Article  CAS  Google Scholar 

  43. Bujdak J (2006) Effect of the layer charge of clay minerals on optical properties of organic dyes. A review. Appl Clay Sci 34:58–73

    Article  CAS  Google Scholar 

  44. Felbeck T et al (2013) Nile-Red–nanoclay hybrids: red emissive optical probes for use in aqueous dispersion. Langmuir 29(36):11489–11497

    Article  CAS  PubMed  Google Scholar 

  45. Felbeck T et al (2015) Multifold fluorescence enhancement in nanoscopic fluorophore-clay hybrids in transparent aqueous media. Chem Eur J 21(20):7582–7587

    Article  CAS  PubMed  Google Scholar 

  46. Grabolle M, Starke M, Resch-Genger U (2016) Highly fluorescent dye-nanoclay hybrid materials made from different dye classes. Langmuir 32(14):3506–3513

    Article  CAS  PubMed  Google Scholar 

  47. Sapsford KE et al (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113(3):1904–2074

    Article  CAS  PubMed  Google Scholar 

  48. Behnke T et al (2013) Target-specific nanoparticles containing a broad band emissive NIR dye for the sensitive detection and characterization of tumor development. Biomaterials 34(1):160–170

    Article  CAS  PubMed  Google Scholar 

  49. Quevedo PD, Behnke T, Resch-Genger U (2016) Streptavidin conjugation and quantification—a method evaluation for nanoparticles. Anal Bioanal Chem 408(15):4133–4149

    Article  CAS  PubMed  Google Scholar 

  50. Pauli J et al (2011) Dye-biomolecule conjugates and NIR-fluorescent particles for targeting of disease-related biomarkers. SPIE Proc 7910:791014. ISBN: 9780819484475

    Google Scholar 

  51. Hoffmann K, Behnke T, Grabolle M, Resch-Genger U (2014) Nanoparticle-encapsulated vis- and NIR-emissive fluorophores with different fluorescence decay kinetics for lifetime multiplexing. Anal Bioanal Chem 406(14):3315–3322

    Article  CAS  PubMed  Google Scholar 

  52. Hoffmann K, Behnke T, Drescher D, Kneipp J, & ReschGenger U (2011) Lifetime-based discrimination between spectrally matching vis and NIR emitting particle labes and probes single molecule spectroscopy and imaging IV. Proc SPIE 79051F79051-79051F-79059

    Google Scholar 

  53. Ashraf S et al (2014) Fluorescence-based ion-sensing with colloidal particles. Curr Opin Pharmacol 18:98–103

    Article  CAS  PubMed  Google Scholar 

  54. Petryayeva E, Algar WR, Medintz IL (2013) Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc 67(3):215–252

    Article  CAS  PubMed  Google Scholar 

  55. Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44(14):4792–4834

    Article  CAS  PubMed  Google Scholar 

  56. Lesnyak V, Gaponik N, Eychmueller A (2013) Colloidal semiconductor nanocrystals: the aqueous approach. Chem Soc Rev 42(7):2905–2929

    Article  CAS  PubMed  Google Scholar 

  57. Palui G, Aldeek F, Wang WT, Mattoussi H (2015) Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating. Chem Soc Rev 44(1):193–227

    Article  CAS  PubMed  Google Scholar 

  58. Ziegler J, Merkulov A, Grabolle M, Resch-Genger U, Nann T (2007) High-quality ZnS shells for CdSe nanoparticles: rapid microwave synthesis. Langmuir 23(14):7751–7759

    Article  CAS  PubMed  Google Scholar 

  59. Greytak AB et al (2012) Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions. Chem Sci 3(6):2028–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Grabolle M et al (2009) Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem 81(15):6285–6294

    Article  CAS  Google Scholar 

  61. Ostermann J et al (2015) Tailoring the ligand shell for the control of cellular uptake and optical properties of nanocrystals. Beilstein J Nanotechnol 6:232–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Walker GW et al (2003) Quantum-dot optical temperature probes. Appl Phys Lett 83(17):3555–3557

    Article  CAS  Google Scholar 

  63. Liu Y-S et al (2007) pH-Sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. J Phys Chem C 111(7):2872–2878

    Article  CAS  Google Scholar 

  64. Wang X, Boschetti C, Ruedas-Rama MJ, Tunnacliffe A, Hall EAH (2010) Ratiometric pH-dot ANSors. Analyst 135(7):1585–1591

    Article  CAS  PubMed  Google Scholar 

  65. Orte A, Alvarez-Pez JM, Ruedas-Rama MJ (2013) Fluorescence lifetime imaging microscopy for the detection of intracellular pH with quantum dot nanosensors. ACS Nano 7(7):6387–6395

    Article  CAS  PubMed  Google Scholar 

  66. Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74(19):5132–5138

    Article  CAS  PubMed  Google Scholar 

  67. Li H, Zhang Y, Wang X, Xiong D, Bai Y (2007) Calixarene capped quantum dots as luminescent probes for Hg2+ ions. Mater Lett 61(7):1474–1477

    Article  CAS  Google Scholar 

  68. Gattas-Asfura KM, Leblanc RM (2003) Peptide-coated CdS quantum dots for the optical detection of copper(ii) and silver(i). Chem Commun 3(21):2684–2685

    Article  Google Scholar 

  69. Jin WJ, Fernandez-Arguelles MT, Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2005) Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions. Chem Commun 7:883–885

    Article  Google Scholar 

  70. Callan JF, Mulrooney RC, Kamila S, McCaughan B (2008) Anion sensing with luminescent quantum dots – A modular approach based on the Photoinduced Electron Transfer (PET) mechanism. J Fluoresc 18(2):527–532

    Article  CAS  PubMed  Google Scholar 

  71. Kuningas K et al (2007) Upconversion fluorescence enables homogeneous immunoassay in whole blood. Clin Chem 53(1):145–146

    Article  CAS  PubMed  Google Scholar 

  72. Liu Q, Feng W, Yang T, Yi T, Li F (2013) Upconversion luminescence imaging of cells and small animals. Nat Protoc 8(10):2033–2044

    Article  CAS  PubMed  Google Scholar 

  73. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104(1):139–174

    Article  CAS  PubMed  Google Scholar 

  74. Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38(4):976–989

    Article  CAS  PubMed  Google Scholar 

  75. Zeng JH, Su J, Li ZH, Yan RX, Li YD (2005) Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3+ phosphors of controlled size and morphology. Adv Mater 17(17):2119–2123

    Article  CAS  Google Scholar 

  76. Chen Z et al (2008) Versatile synthesis strategy for carboxylic acid−functionalized upconverting nanophosphors as biological labels. J Am Chem Soc 130(10):3023–3029

    Article  CAS  PubMed  Google Scholar 

  77. Hao S, Chen G, Yang C (2013) Sensing using rare-earth-doped upconversion nanoparticles. Theranostics 3(5):331–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Cao T et al (2010) Water-soluble NaYF4:Yb/Er upconversion nanophosphors: synthesis, characteristics and application in bioimaging. Inorg Chem Commun 13(3):392–394

    Article  CAS  Google Scholar 

  79. Wilhelm S et al (2015) Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nanoscale 7(4):1403–1410

    Article  CAS  PubMed  Google Scholar 

  80. Wang F, Wang JA, Liu XG (2010) Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew Chem Int Ed 49(41):7456–7460

    Article  CAS  Google Scholar 

  81. Gnach A, Bednarkiewicz A (2012) Lanthanide-doped up-converting nanoparticles: merits and challenges. Nano Today 7(6):532–563

    Article  CAS  Google Scholar 

  82. Liu HC et al (2013) Balancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities. Nanoscale 5(11):4770–4775

    Article  CAS  PubMed  Google Scholar 

  83. Vetrone F et al (2010) Temperature sensing using fluorescent nanothermometers. ACS Nano 4(6):3254–3258

    Article  CAS  PubMed  Google Scholar 

  84. Dong H, Sun L-D, Yan C-H (2015) Energy transfer in lanthanide upconversion studies for extended optical applications. Chem Soc Rev 44(6):1608–1634

    Article  CAS  PubMed  Google Scholar 

  85. Boyer J-C, Manseau M-P, Murray JI, van Veggel FCJM (2010) Surface modification of upconverting NaYF4 nanoparticles with PEG−Phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir 26(2):1157–1164

    Article  CAS  PubMed  Google Scholar 

  86. Anderson RB, Smith SJ, May PS, Berry MT (2014) Revisiting the NIR-to-visible upconversion mechanism in beta-NaYF4:Yb3+,Er3+. J Phys Chem Lett 5(1):36–42

    Article  CAS  PubMed  Google Scholar 

  87. Berry MT, May PS (2015) Disputed mechanism for NIR-to-red upconversion luminescence in NaYF4:Yb3+,Er3+. J Phys Chem A 119(38):9805–9811

    Article  CAS  PubMed  Google Scholar 

  88. Gai SL, Li CX, Yang PP, Lin J (2014) Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114(4):2343–2389

    Article  CAS  PubMed  Google Scholar 

  89. Liu GK (2015) Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem Soc Rev 44(6):1635–1652

    Article  CAS  PubMed  Google Scholar 

  90. Arppe R et al (2015) Quenching of the upconversion luminescence of NaYF4:Yb3+,Er3+ and NaYF4:Yb3+,Tm3+ nanophosphors by water: the role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale 7(27):11746–11757

    Article  CAS  PubMed  Google Scholar 

  91. Yi G-S, Chow G-M (2007) Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/Polymer Core/Shell/Shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater 19(3):341–343

    Article  CAS  Google Scholar 

  92. Esipova TV et al (2012) Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources. Proc Natl Acad Sci 109(51):20826–20831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu Q, Peng J, Sun L, Li F (2011) High-efficiency upconversion luminescent sensing and bioimaging of Hg(II) by chromophoric ruthenium complex-assembled nanophosphors. ACS Nano 5(10):8040–8048

    Article  CAS  PubMed  Google Scholar 

  94. Liu Y et al (2013) A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J Am Chem Soc 135(26):9869–9876

    Article  CAS  PubMed  Google Scholar 

  95. Liu S et al (2014) Development of upconversion luminescent probe for ratiometric sensing and bioimaging of hydrogen sulfide. ACS Appl Mater Interfaces 6(14):11013–11017

    Article  CAS  PubMed  Google Scholar 

  96. Zhao L et al (2014) Yolk–Shell upconversion nanocomposites for LRET sensing of Cysteine/Homocysteine. ACS Appl Mater Interfaces 6(14):11190–11197

    Article  CAS  PubMed  Google Scholar 

  97. Cen Y et al (2014) Phospholipid-modified upconversion nanoprobe for ratiometric fluorescence detection and imaging of Phospholipase D in cell lysate and in living cells. Anal Chem 86(14):7119–7127

    Article  CAS  PubMed  Google Scholar 

  98. Zhang C, Yuan Y, Zhang S, Wang Y, Liu Z (2011) Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide. Angew Chem Int Ed 50(30):6851–6854

    Article  CAS  Google Scholar 

  99. Han J et al (2014) Upconversion nanoparticles for ratiometric fluorescence detection of nitrite. Analyst 139(12):3032–3038

    Article  CAS  PubMed  Google Scholar 

  100. Yan L et al (2014) Biocompatible and flexible graphene oxide/upconversion nanoparticle hybrid film for optical pH sensing. Phys Chem Chem Phys 16(4):1576–1582

    Article  CAS  PubMed  Google Scholar 

  101. Xie L, Qin Y, Chen H-Y (2013) Direct fluorescent measurement of blood potassium with polymeric optical sensors based on upconverting nanomaterials. Anal Chem 85(5):2617–2622

    Article  CAS  PubMed  Google Scholar 

  102. Meier RJ, Simbürger JMB, Soukka T, Schäferling M (2014) Background-free referenced luminescence sensing and imaging of pH using upconverting phosphors and color camera read-out. Anal Chem 86(11):5535–5540

    Article  CAS  PubMed  Google Scholar 

  103. Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL (2011) Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem 83(12):4453–4488

    Article  CAS  PubMed  Google Scholar 

  104. Martini M et al (2009) How to measure quantum yields in scattering media: application to the quantum yield measurement of fluorescein molecules encapsulated in sub-100 nm silica particles. J Appl Phys 106(9):094304

    Article  CAS  Google Scholar 

  105. Sun GR et al (2010) Bright fluorescent nanoparticles for developing potential optical imaging contrast agents. Nanoscale 2(4):548–558

    Article  CAS  PubMed  Google Scholar 

  106. Herz E et al (2010) Relative quantum yield measurements of Coumarin encapsulated in core-shell silica nanoparticles. J Fluoresc 20(1):67–72

    Article  CAS  PubMed  Google Scholar 

  107. Würth C, Geißler D, Behnke T, Kaiser M, Resch-Genger U (2015) Critical review of the determination of photoluminescence quantum yields of luminescent reporters. Anal Bioanal Chem 407(1):59–78

    Article  PubMed  CAS  Google Scholar 

  108. Bonacchi S et al (2011) Luminescent silica nanoparticles: extending the frontiers of brightness. Angew Chem Int Ed 50(18):4056–4066

    Article  CAS  Google Scholar 

  109. Hennig A et al (2012) Scope and limitations of surface functional group quantification methods: exploratory study with Poly(acrylic acid)-grafted micro- and nanoparticles. J Am Chem Soc 134(19):8268–8276

    Article  CAS  PubMed  Google Scholar 

  110. Hennig A et al (2011) Simple colorimetric method for quantification of surface carboxy groups on polymer particles. Anal Chem 83(12):4970–4974

    Article  CAS  PubMed  Google Scholar 

  111. Hennig A et al (2011) Quantification of surface functional groups on polymer microspheres by supramolecular host-guest interactions. Chem Commun 47(27):7842–7844

    Article  CAS  Google Scholar 

  112. Felbeck T, Hoffmann K, Lezhnina MM, Kynast UH, Resch-Genger U (2015) Fluorescent nanoclays: covalent functionalization with amine reactive dyes from different fluorophore classes and surface group quantification. J Phys Chem C 119(23):12978–12987

    Article  CAS  Google Scholar 

  113. Hennig A et al (2015) En route to traceable reference standards for surface group quantifications by XPS, NMR and fluorescence spectroscopy. Analyst 140(6):1804–1808

    Article  CAS  PubMed  Google Scholar 

  114. Leubner S et al (2013) Experimental and theoretical investigations of the ligand structure of water-soluble CdTe nanocrystals. Dalton Trans 42(35):12733–12740

    Article  CAS  PubMed  Google Scholar 

  115. Moser M et al (2015) Quantification of PEG-Maleimide ligands and coupling efficiencies on nanoparticles with Ellman’s reagent. Anal Chem 87(18):9376–9383

    Article  CAS  PubMed  Google Scholar 

  116. Leubner S et al (2014) Influence of the stabilizing ligand on the quality, signal-relevant optical properties, and stability of near-infrared emitting Cd1-xHgxTe nanocrystals. J Mater Chem C 2(25):5011–5018

    Article  CAS  Google Scholar 

  117. Hoffmann K, Resch-Genger U, Mix R, Friedrich JF (2006) Fluorescence spectroscopic studies on plasma-chemically modified polymer surfaces with fluorophore-labeled functionalities. J Fluoresc 16(3):441–448

    Article  CAS  PubMed  Google Scholar 

  118. Zhan N, Palui G, Merkl JP, Mattoussi H (2015) Quantifying the density of surface capping ligands on semiconductor quantum dots. In: Parak WJ, Osinski M, XJ L (eds) Colloidal nanoparticles for biomedical applications X, Proceedings of SPIE, vol 9338

    Google Scholar 

  119. Ostermann J et al (2013) Controlling the physical and biological properties of highly fluorescent aqueous quantum dots using block copolymers of different size and shape. ACS Nano 7(10):9156–9167

    Article  CAS  PubMed  Google Scholar 

  120. Grabolle M, Ziegler J, Merkulov A, Nann T, Resch-Genger U (2008) Stability and fluorescence quantum yield of CdSe/ZnS quantum dots – Influence of the thickness of the ZnS-shell. Ann N. Y. Acad Sci 1130:235–241

    Article  CAS  PubMed  Google Scholar 

  121. Hatami S et al (2015) Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd1-xHgxTe and PbS quantum dots – method- and material-inherent challenges. Nanoscale 7(1):133–143

    Article  CAS  PubMed  Google Scholar 

  122. Würth C, Pauli J, Lochmann C, Spieles M, Resch-Genger U (2012) Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared. Anal Chem 84(3):1345–1352

    Article  PubMed  CAS  Google Scholar 

  123. Grabolle M et al (2009) Fluorescence lifetime multiplexing with nanocrystals and organic labels. Anal Chem 81(18):7807–7813

    Article  CAS  PubMed  Google Scholar 

  124. Abbasi AZ et al (2011) How colloidal nanoparticles could facilitate multiplexed measurements of different analytes with analyte-sensitive organic fluorophores. ACS Nano 5(1):21–25

    Article  CAS  PubMed  Google Scholar 

  125. Lu YQ et al (2014) Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photonics 8(1):33–37

    Google Scholar 

  126. Stich MIJ, Nagl S, Wolfbeis OS, Henne U, Schaeferling M (2008) A dual luminescent sensor material for simultaneous imaging of pressure and temperature on surfaces. Adv Funct Mater 18(9):1399–1406

    Article  CAS  Google Scholar 

  127. Arppe R et al (2014) Photon upconversion sensitized nanoprobes for sensing and imaging of pH. Nanoscale 6(12):6837–6843

    Article  CAS  PubMed  Google Scholar 

  128. Markus MA et al (2015) Tracking of inhaled near-infrared fluorescent nanoparticles in lungs of SKH-1 mice with allergic airway inflammation. ACS Nano 9(12):11642–11657

    Article  CAS  PubMed  Google Scholar 

  129. Aslan K et al (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62

    Article  CAS  PubMed  Google Scholar 

  130. Pompa PP et al (2006) Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat Nanotechnol 1(2):126–130

    Article  CAS  PubMed  Google Scholar 

  131. Ge W et al (2013) Distance dependence of gold-enhanced upconversion luminescence in Au/SiO 2/Y 2 O 3: Yb 3+, Er 3+ nanoparticles. Theranostics 3(4):282–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Morris-Cohen AJ et al (2013) Chemical, structural, and quantitative analysis of the ligand shells of colloidal quantum dots. Chem Mater 25(8):1155–1165

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the EU CMST COST Action CM1403 “The Euopean Upconversion Network” and the M-era.Net project 2179 “NANOHYPE” for financial support. M.S. thanks the DFG (Deutsche Forschungsgemeinschaft) for a Heisenberg-Fellowship and Prof. Tero Soukka for hosting me as a FiDiPro fellow. U.R. gratefully acknowledges support from DFG (grants RE 1203/17-1 and RE 1203/12-3) and the BMBF (program KMU Nanochance; project NanoGenotox).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schäferling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schäferling, M., Resch-Genger, U. (2017). Luminescent Nanoparticles for Chemical Sensing and Imaging. In: Geddes, C. (eds) Reviews in Fluorescence 2016. Reviews in Fluorescence. Springer, Cham. https://doi.org/10.1007/978-3-319-48260-6_5

Download citation

Publish with us

Policies and ethics