Skip to main content

Anisotropy of Crystal-Melt Interface of BCC-Fe and FCC-Fe from Molecular Dynamics Simulation

  • Conference paper
TMS 2016 145th Annual Meeting & Exhibition
  • 2343 Accesses

Abstract

Thermodynamic and kinetic properties of crystal-melt (c-m) interface were computed for both BCC and FCC phases of Fe by molecular-dynamics simulation. Two Sutton-Chen potentials were adopted to describe the two solid phases of Fe. Firstly discussed is the anisotropy of melting point in different interfacial orientation which is calculated by two different methods (the coexisting phase method(CPM) and the interfacial velocity methods(IVM)). Free solidification simulations were used to determine the kinetic coefficient μ of the c-m interface. The anisotropy of of μ with respect to growth direction is μ 100 > μ110, μ100 > μ111 for the BCC phase and μ100 > μ110 ~ μ111 for the FCC phase, and the kinetic coefficients of BCC are larger than the counterparts for he FCC. Through the interfacial roughness of BCC-Fe under supercooling/superheating, the slight asymmetry between melting and solidifying can be observed too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Hashibon, et al., “Ordering at solid-liquid interfaces between dissimilar materials,” Interface Science, 2001. 9(3–4): p. 175–181.

    Article  Google Scholar 

  2. B.B. Laird and A. Haymet, “The crystal/liquid interface: structure and properties from computer simulation,” Chemical Reviews, 1992. 92(8): p. 1819–1837.

    Article  Google Scholar 

  3. V.G. Baidakov, S.P. Protsenko, and A.O. Tipeev, “Surface Free Energy of the Crystal-Liquid Interface on the Metastable Extension of the Melting Curve,” Jetp Letters, 2014. 98(12): p. 801–804.

    Article  Google Scholar 

  4. RL. Davidchack and B.B. Laird, “Crystal structure and interaction dependence of the crystal-melt interfacial free energy,” Physical review letters, 2005. 94(8).

    Google Scholar 

  5. J.R. Morris, et al., “The anisotropic free energy of the solid-liquid phase boundary in Al,” Interface Science, 2002. 10(2–3): p. 143–148.

    Article  Google Scholar 

  6. Y.H. Liu, et al., “Molecular dynamics simulation of phase transformation of γ-Fe→δ-Fe→liquid Fe in continuous temperature rise process,” Acta Metallurgica Sinica, 2010. 46(2): p. 172~178.

    Google Scholar 

  7. S.N. Luo, A. Strachan, and D.C. Swift, “Nonequilibrium melting and crystallization of a model Lennard-Jones system,” Journal of Chemical Physics, 2004. 120(24): p. 11640–11649.

    Article  Google Scholar 

  8. J.R. Morris and X. Song, “The melting lines of model systems calculated from coexistence simulations,” The Journal of Chemical Physics, 2002. 116(21): p. 9352~9358.

    Article  Google Scholar 

  9. Y. Shibuta, S. Takamoto, and T. Suzuki, “A molecular dynamics study of the energy and structure of the symmetric tilt boundary of iron,” ISIJ international, 2008. 48(11): p. 1582~1591.

    Article  Google Scholar 

  10. A.T. Dinsdale, “SGTE data for pure elements,” Calphad, 1991. 15(4): p. 317–425.

    Article  Google Scholar 

  11. D.Y. Sun, M. Asta, and J.J. Hoyt, “Kinetic coefficient of Ni solid-liquid interfaces from molecular-dynamics simulations,” Physical Review B, 2004. 69(2): p. 024108.

    Article  Google Scholar 

  12. V. Sorkin, E. Polturak, and J. Adler, “Molecular dynamics study of melting of the bcc metal vanadium. II. Thermodynamic melting,” Physical Review B, 2003. 68(17): p. 174103.

    Article  Google Scholar 

  13. J. Broughton, G. Gilmer, and K. Jackson, “Crystallization rates of a Lennard-Jones liquid,” Physical review letters, 1982. 49(20): p. 1496.

    Article  Google Scholar 

  14. H.W. Wilson, “XX. On the velocity of solidification and viscosity of super-cooled liquids,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1900. 50(303): p. 238–250.

    Article  Google Scholar 

  15. Y. Ashkenazy and R.S. Averback, “Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals,” Acta Materialia, 2010. 58(2): p. 524–530.

    Article  Google Scholar 

  16. E. Burke, J.Q. Broughton, and G.H. Gilmer, “Crystallization of fcc (111) and (100) crystal-melt interfaces: A comparison by molecular dynamics for the Lennard-Jones system,” The Journal of Chemical Physics, 1988. 89(2): p. 1030~1041.

    Article  Google Scholar 

  17. H.E.A. Huitema, M.J. Vlot, and J.P. van der Eerden, “Simulations of crystal growth from Lennard-Jones melt: Detailed measurements of the interface structure,” The Journal of Chemical Physics, 1999. 111(10): p. 4714~4723.

    Article  Google Scholar 

  18. D.Y. Sun, M. Asta, and J.J. Hoyt, “Crystal-melt interfacial free energies and mobilities in fcc and bcc Fe,” Physical Review B, 2004. 69(17).

    Google Scholar 

  19. M.W. Finnis and J.E. Sinclair, “A simple empirical N-body potential for transition metals,” Philosophical Magazine A, 1984. 50(1): p. 45~55.

    Article  Google Scholar 

  20. J.J. Hoyt, et al., “Kinetic phase field parameters for the Cu-Ni system derived from atomistic computations,” Acta Materialia, 1999. 47(11): p. 3181–3187.

    Article  Google Scholar 

  21. Z.G. Xia, et al., “Molecular dynamics calculations of the crystal-melt interfacial mobility for hexagonal close-packed Mg,” Physical Review B, 2007. 75(1): p. 012103.

    Article  Google Scholar 

  22. A.P. Sutton and J. Chen, “Long-range Finnis–Sinclair potentials,” Philosophical Magazine Letters, 1990. 61(3): p. 139~146.

    Article  Google Scholar 

  23. T. Shen, et al., “Size dependence and phase transition during melting of fcc-Fe nanoparticles: A molecular dynamics simulation,” Applied Surface Science, 2013. 277: p. 7–14.

    Article  Google Scholar 

  24. T. Shen, Y. Wu, and X. Lu, “Structural evolution of five-fold twins during the solidification of Fe5601 nanoparticle: a molecular dynamics simulation,” Journal of Molecular Modeling, 2013. 19(2): p. 751~755.

    Article  Google Scholar 

  25. Y. Wu, T. Shen, and X. Lu, “Evolutions of lamellar structure during melting and solidification of Fe9577 nanoparticle from molecular dynamics simulations,” Chemical Physics Letters, 2013. 564: p. 41~46.

    Article  Google Scholar 

  26. W. Lechner and C. Dellago, “Accurate determination of crystal structures based on averaged local bond order parameters,” The Journal of Chemical Physics, 2008. 129(11): p. 114707.

    Article  Google Scholar 

  27. C.H. Rycroft, “VORO++: A three-dimensional Voronoi cell library in C++,” Chaos: An Interdisciplinary Journal of Nonlinear Science, 2009. 19(4): p. ~.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Lv, L., Jiang, Y., Wu, Y., Xiao, J. (2016). Anisotropy of Crystal-Melt Interface of BCC-Fe and FCC-Fe from Molecular Dynamics Simulation. In: TMS 2016 145th Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48254-5_39

Download citation

Publish with us

Policies and ethics