Skip to main content

Hydrogen-Induced Core Structures Change of Screw and Edge Dislocations in Tungsten

  • Conference paper
TMS 2016 145th Annual Meeting & Exhibition
  • 2323 Accesses

Abstract

A Quantum Mechanic/ molecular mechanical (QM/MM) method is employed in studying the screw and edge dislocation core structure of Tungsten. When absence of H, the widely used MEAM potential can successfully provide the core structure for both types of dislocations. However, no suitable W-H potential can describe the right structure when H is introduced. The coupling of the molecular dynamics and Ab initio calculation predicts a six-fold nondegenerate structure with a H atom added in screw dislocation, while in edge dislocation a partial dislocation appeared in the dislocation core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

BOOK

  1. Hirth, J. P., and J. Lothe. “Theory of Dislocations, 2nd.” Ed.: John Willey & Sons (1982).

    Google Scholar 

JOURNAL

  1. Zhou H B, Liu Y L, Jin S, et al. “Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: from dissolution and diffusion to a trapping mechanism”, Nuclear Fusion, 2010, 50(2): 025016.

    Article  Google Scholar 

  2. Baskes, M. I. “Modified embedded-atom potentials for cubic materials and impurities.” Physical Review B 46.5 (1992): 2727.

    Google Scholar 

  3. Fuchs, Martin, and Matthias Scheffler. “Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory.” Computer Physics Communications 119.1 (1999): 67–98.

    Article  Google Scholar 

  4. Kresse, G., and J. Hafner. “Ab initio molecular dynamics for open-shell transition metals.” Physical Review B 48.17 (1993): 13115.

    Article  Google Scholar 

  5. Fuchs, Martin, and Matthias Scheffler. “Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory.” Computer Physics Communications 119.1 (1999): 67–98.

    Article  Google Scholar 

  6. Kresse, Georg, and Jürgen Furthmüller. “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.” Computational Materials Science 6.1 (1996): 15–50.

    Article  Google Scholar 

  7. Blöchl, Peter E. “Projector augmented-wave method.” Physical Review B 50.24 (1994): 17953.

    Article  Google Scholar 

  8. Monkhorst, Hendrik J., and James D. Pack. “Special points for Brillouin-zone integrations.” Physical Review B 13.12 (1976): 5188.

    Article  Google Scholar 

  9. Zhou, X. W., et al. “Atomic scale structure of sputtered metal multilayers.” Acta materialia 49.19 (2001): 4005–4015.

    Article  Google Scholar 

  10. Choly, Nicholas, et al. “Multiscale simulations in simple metals: A density-functional-based methodology.” Physical Review B 71.9 (2005): 094101.

    Article  Google Scholar 

  11. Liu, Yi, et al. “An improved QM/MM approach for metals.” Modelling and Simulation in Materials Science and Engineering 15.3 (2007): 275.

    Article  Google Scholar 

  12. Ramasubramaniam, Ashwin, Mitsuhiro Itakura, and Emily A. Carter. “Interatomic potentials for hydrogen in α—iron based on density functional theory.” Physical Review B 79.17 (2009): 174101.

    Article  Google Scholar 

  13. Vitek, V., R. C. Perrin, and D. K. Bowen. “The core structure of ½ (111) screw dislocations in bcc crystals.” Philosophical Magazine 21.173 (1970): 1049–1073.

    Article  Google Scholar 

  14. Hartley C S, Mishin Y. “Representation of dislocation cores using Nye tensor distributions.” Materials Science & Engineering A, 2005, 400(8):18–21.

    Article  Google Scholar 

  15. Dai, Fuzhi, and Wenzheng Zhang. “Identification of Secondary Dislocations by Singular Value Decomposition of the Nye Tensor.” Acta Metallurgica Sinica (English Letters) 27.6 (2014): 1078–1082.

    Article  Google Scholar 

  16. Yang, Xue, and Ahmed Hassanein. “Molecular dynamics simulation of deuterium trapping and bubble formation in tungsten.” Journal of Nuclear Materials 434.1 (2013): 1–6.

    Google Scholar 

  17. Yang, Xue, and Ahmed Hassanein. “Molecular dynamics simulation of erosion and surface evolution of tungsten due to bombardment with deuterium and carbon in Tokamak fusion environments.” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 308 (2013): 80–87.

    Article  Google Scholar 

  18. Duesbery, M. and-S., and V. Vitek. “Plastic anisotropy in bcc transition metals.” Acta Materialia 46.5 (1998): 1481–1492.

    Article  Google Scholar 

  19. Samolyuk, German D., Y. N. Osetsky, and R. E. Stoller. “The influence of transition metal solutes on the dislocation core structure and values of the Peierls stress and barrier in tungsten.” Journal of Physics: Condensed Matter 25.2 (2013): 025403.

    Google Scholar 

  20. Park, Hyoungki, et al. “Ab initio based empirical potential used to study the mechanical properties of molybdenum.” Physical Review B 85.21 (2012): 214121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Wang, Y., Li, C., Xu, B., Liu, W. (2016). Hydrogen-Induced Core Structures Change of Screw and Edge Dislocations in Tungsten. In: TMS 2016 145th Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48254-5_32

Download citation

Publish with us

Policies and ethics