Skip to main content

Verification of Numerically Calculated Cooling Rates of Powder bed Additive Manufacturing

  • Conference paper
  • 2356 Accesses

Abstract

In order to increase the powder bed production rates, the laser power and diameter are increased enabling faster scanning, thicker powder layers and wider hatches. These parameters however interact in a very complex manner: For example increasing the laser power may lead to significant evaporation of the molten metal. Increasing the scan speed may lead to reduced melting and lack of fusion of the powder particles. Combining higher scanning speeds with increased layer thickness enhances lack of fusion even more. Larger beam diameters reduce the energy density and hence impose limitations to scan speeds. Physics based modelling has the potential to shed light into how these competing phenomena interact and can accelerate fine tuning build parameters to achieve design goals. Models resolving the heat source powder interaction and describing the melt pool and solidification processes could not be formally validated using experimental data due to the extreme severity of the processing environment. In an effort to verify models describing melt pool behavior the results of two different algorithms are compared: Lattice Boltzmann and Finite Volume Computational Fluid Dynamics. Both codes were developed separately by two different and independent teams. A reference benchmark is defined with corresponding operation conditions. The physical assumptions are aligned as far as possible. The melt pool characteristics and the thermal cycles are compared.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Measurement and Prediction of the Thermal Conductivity of Powders at High Temperature. S.S. Sih, J.W. Barlow, D.L. Bourell, R. Crowford. 1994. 5th Annual SFF Symposium Austin: The University of Texas, p.321–329.

    Google Scholar 

  2. Sintering of Commercially Pure Titanium Powder with a Nd:YAG Laser Source. P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, R. Glardon. 2003, Acta Materialia, Vols. 51: pp. 1651–1662.

    Google Scholar 

  3. Thermal and Mechanical Finite Element Modeling of Laser Forming from Metal and Ceramic Powders. K. Dai, L. Shaw. [ed.] Elsevier Ltd. 2004, Acta Materialia, Vols. 52: 69–80.

    Google Scholar 

  4. A Three Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing. I.A. Robert, C.J. Wang, R. Esterlein, M. Stanford, D.J. Mynors. s.l.: Elsevier Ltd., 2009, International Journal f Machine Tools & Manufacture, Vols. 49: pp. 916–923.

    Google Scholar 

  5. DMLS Process Modelling & Validation. N. N’Dri, H.-W. Mindt, B. Shula, M. Megahed, A. Peralta, P. Kantzos, J. Neumann. Orlando: Wiley, TMS 2015 144th Annual Meeting & Exhibition, 2015. 978–1–119–08241–5.

    Google Scholar 

  6. Mesoscopic Simulation of Selective Beam Melting Processes. C. Körner, E. Attar, P. Heinl. s.l.: Elsevier B.V., 2011, Journal of Materials Processing Technology, Vols. 211: pp. 978–987.

    Google Scholar 

  7. W. King, A. Anderson, R. Ferencz, N. Hodge, C. Kamath and S. Khairallah. Additive Manufacturing Challenges and Opportunities: 3D Modeling and Simulation. s.l.: Lawrence Livermore National Laboratory, 2013.

    Google Scholar 

  8. On the Role of Melt Flow into the Surface Structure and Porosity Development during Selective Laser Melting. C. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks and M.M. Attallah. s.l.: Elsevier Ltd., 2015, Acta Materialia, Vol. 96, pp. 72–79.

    Google Scholar 

  9. DMLM Models — Numerical Assessment of Porosity. H.-W. Mindt, M. Megahed, A.D. Peralta, J. Neumann. Phoenix, AZ., USA.: s.n., 2015. 22nd ISABE Conference, Oct. 25–30.

    Google Scholar 

  10. R.B. Bird, W.E. Stewart, E.N. Lightfoot. Transport Phenomena. s.l.: John Wiley & Sons, 1960.

    Google Scholar 

  11. R. Ansorge, T. Sonar. Mathematical Models of Fluid Mechanics. s.l.: Wiley-VCH Verlag GmbH & Co KGaA, 1998. 978–3–527–40774–3.

    Google Scholar 

  12. P.W. Fuerschbach, J.T. Norris, X. He, T. DebRoy. Understanding Metal Vaporization from Laser Welding. s.l.: Sandia National Laboratories, 2003. SAND2003–3490.

    Google Scholar 

  13. Bäuerle, D. Laser Processing and Chemistry. s.l.: Springer Verlag, 2011. 978–3–642–17612–8.

    Book  Google Scholar 

  14. Patankar, S.V. Numerical Heat Transfer and Fluid Flow. New York: McGraw-Hill, 1980.

    Google Scholar 

  15. J.H. Ferziger, M. Peric. Numerische Strömungsmechanik. s.l.: Springer-Verlag, 2008. 978-3-540-67586-0.

    Google Scholar 

  16. Comparison of Finite-Volume Numerical Methods with Staggered and Collocated Grids. M. Peric, R. Kessler, G. Scheuerer. 1988, Computers and Fluids, Vols. 16 (4): 389–403.

    Google Scholar 

  17. A priori Derivation of the Lattice Boltzmann Equation. He, X. and Luo, L.S. s.l.: Physical Review E, 1997. Vols. 55, No. 6: R6333–6336.

    Google Scholar 

  18. Lattice Boltzmann Method for Fluid Flows. S. Chen, D.G. Doolen. s.l.: Annu. Rev.: Fluid Mech., 1998. Vols. 30:329–364.

    Google Scholar 

  19. A Coupled Approach to Weld Pool, Phase and Residual Stress Modelling of Laser Direct Metal Deposition (LDMD) Processes. M. Vogel, M. Khan, J. Ibarra-Medina, A.J. Pinkerton, N. N’Dri and M. Megahed. Salt Lake City: s.n., 2013. 978-1-11876-689-7.

    Book  Google Scholar 

  20. ESI Group. CFD-ACE+ Theory & User Manuals. 2014.

    Google Scholar 

  21. Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford: Clarendon Press, 2001.

    Google Scholar 

  22. E. Attar. Simulation der selektiven Elektronenstrahlschmelzprozesse. Erlangen: Ph.D. Thesis, 2011.

    Google Scholar 

  23. Mills, K. C. Recommended values of thermophysical properties for selected commercial alloys. s.l.: Woodhead Publishing Limited, 2002.

    Book  Google Scholar 

  24. Arce, Alderson Neira. Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping of Ti6Al4V Alloys. s.l.: North Carolina State University, 2012. Vol. PhD Thesis.

    Google Scholar 

  25. Thermophysical properties of liquid AlTi-based alloys. Egry, I., et al., et al. 4–5, s.l.: International Journal of Thermophysics, 2010, International Journal of Thermophysics, Vol. 31, pp. 949–965.

    Google Scholar 

  26. In-house measurements of Ti-Al6–V4 properties. MACH1. 2015.

    Google Scholar 

  27. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. C.W. Hirt, B.D. Nichols. 1981, Journal of Computational Physics, Vols. 39, pp. 201–225.

    Article  Google Scholar 

  28. The ThermoLab Project: Thermophysical Property Measurements in Space for Industrial High Temperature Alloys. Fecht, H.J. and Wunderlich, R. 4, 2005, J. Jpn. Soc. Microgravity Appl., Vol. 27, pp. 190–198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Mindt, HW., Megahed, M., Lavery, N.P., Giordimaina, A., Brown, S.G.R. (2016). Verification of Numerically Calculated Cooling Rates of Powder bed Additive Manufacturing. In: TMS 2016 145th Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48254-5_26

Download citation

Publish with us

Policies and ethics