Skip to main content

Simultaneous Improvement of Mechanical and Corrosion Properties of Aluminum Alloys

  • Chapter
Light Metals 2016
  • 117 Accesses

Abstract

The use of Al-alloys is limited in many applications due to a dramatic deterioration of the corrosion properties with any effort made to increase the strength. The hardening phases, uniformly distributed fine intermetallics, act as electrochemical heterogeneities and promote galvanic interactions, thus causing localized corrosion. The chemical composition, size, number, and distribution of the intermetallics in the matrix govern the corrosion of Al alloys. Refining the size and doping of intermetallics via microalloying have been found effective in improving corrosion resistance of Al alloys. This paper presents an overview of recent research on: 1) understanding the influence of intermetallics on corrosion of Al alloys and methods to optimize corrosion and mechanical properties by controlling intermetallic formation via advanced production and post-production processing techniques, and 2) development of ultra-high strength and corrosion resistant Al alloys by combining suitable alloying additions and alloy production techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis, J. R. (1999). Corrosion of aluminum and aluminum alloys. Asm International.

    Google Scholar 

  2. Brown, J. (1999). Foseco non-ferrous foundryman’s handbook. Butterworth-Heinemann.

    Google Scholar 

  3. Polmear, I., & John, D. S. (2005). Light alloys: from traditional alloys to nanocrystals. Butterworth-Heinemann.

    Google Scholar 

  4. Böhni, H., & Uhlig, H. H. (1969). Environmental Factors Affecting the Critical Pitting Potential of Aluminum. Journal of The Electrochemical Society, 116(7), 906. doi:10.1149/1.2412167

    Google Scholar 

  5. Ramgopal, T., Gouma, P. I., & Frankel, G. S. (2002). Role of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150. Corrosion, 58(8), 687–697. doi:10.5006/1.3287699

    Article  Google Scholar 

  6. Chen, G. S., Gao, M., & Wei, R. P. (1996). Microconstituent-Induced Pitting Corrosion in Aluminum Alloy 2024-T3. Corrosion, 52(1), 8–15. doi:10.5006/1.3292099

    Article  Google Scholar 

  7. Gupta, R. K., Deschamps, a., Cavanaugh, M. K., Lynch, S. P., & Birbilis, N. (2012). Relating the Early Evolution of Microstructure with the Electrochemical Response and Mechanical Performance of a Cu-Rich and Cu-Lean 7xxx Aluminum Alloy. Journal of the Electrochemical Society, 159(11), C492–C502. doi:10.1149/2.062211jes

    Article  Google Scholar 

  8. Gupta, R. K., Fabijanic, D., Dorin, T., Qiu, Y., Wang, J. T., & Birbilis, N. (2015). Simultaneous improvement in the strength and corrosion resistance of Al via high-energy ball milling and Cr alloying. Materials & Design, 84, 270–276. doi:10.1016/j.matdes.2015.06.120

    Article  Google Scholar 

  9. Mathauser, E. E., & Deveikis, W. D. (1957). Investigation of the compressive strength and creep lifetime of 2024-T3 aluminum-alloy plates at elevated temperatures. US Government Printing Office.

    Google Scholar 

  10. Gupta, R. K., & Birbilis, N. (2015). The influence of nanocrystalline structure and processing route on corrosion of stainless steel: A review. Corrosion Science, 92, 1–15. doi:10.1016/j.corsci.2014.11.041

    Article  Google Scholar 

  11. Gupta, R. K., Fabijanic, D., Zhang, R., & Birbilis, N. (2015). Corrosion behaviour and hardness of in situ consolidated nanostructured Al and Al-Cr alloys produced via high-energy ball milling. Corrosion Science. doi:10.1016/j.corsci.2015.06.011

    Google Scholar 

  12. Hatch, J. E., & Association, A. (1984). Aluminum: properties and physical metallurgy. ASM International.

    Google Scholar 

  13. Meyers, M. A., Mishra, A., & Benson, D. J. (2006). Mechanical properties of nanocrystalline materials. Progress in Materials Science, 51(4), 427–556.

    Article  Google Scholar 

  14. Inoue, A., & Kimura, H. (2001). Fabrications and mechanical properties of bulk amorphous, nanocrystalline, nanoquasicrystalline alloys in aluminum-based system. Journal of Light Metals, 1(1), 31–41. doi:10.1016/S1471–5317(00)00004–3

    Article  Google Scholar 

  15. Erb, U., & Aust, K. (2006). Electrodeposited Nanocrystalline Metals, Alloys and Composites. In C. C. Koch (Ed.), Nanostructured materials: Processing, Properties and Applications (2nd ed.). Toronto, Ontario, Canada: William Andrew.

    Google Scholar 

  16. Palumbo, G., Thorpe, S. J., & Aust, K. T. (1990). On the contribution of triple junctions to the structure and properties of nanocrystalline materials. Scripta metallurgica et materialia, 24(7), 1347–1350.

    Article  Google Scholar 

  17. Siegel, R. W. (1994). Nanostructured materials-mind over matter. Nanostructured Materials, 4(1), 121–138.

    Article  Google Scholar 

  18. Birringer, R., Gleiter, H., Klein, H.-P., & Marquardt, P. (1984). Nanocrystalline materials an approach to a novel solid structure with gaslike disorder? Physics Letters A, 102(8), 365–369.

    Article  Google Scholar 

  19. Tsai, T. C., & Chuang, T. H. (1997). Role of grain size on the stress corrosion cracking of 7475 aluminum alloys. Materials Science and Engineering: A, 225(1–2), 135–144. doi:10.1016/S0921–5093(96)10840–6

    Article  Google Scholar 

  20. Valiev, R. Z., & Langdon, T. G. (2006). Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science, 51(7), 881–981. doi:10.1016/j.pmatsci.2006.02.003

    Article  Google Scholar 

  21. Minoda, T., & Yoshida, H. (2002). Effect of grain boundary characteristics on intergranular corrosion resistance of 6061 aluminum alloy extrusion. Metallurgical and Materials Transactions A, 33(9), 2891–2898. doi:10.1007/s11661–002–0274–3

    Article  Google Scholar 

  22. Winkler, S. L., Ryan, M. P., & Flower, H. M. (2004). Pitting corrosion in cast 7XXX aluminium alloys and fibre reinforced MMCs. Corrosion Science, 46(4), 893–902. doi:10.1016/j.corsci.2003.09.003

    Article  Google Scholar 

  23. Xun, Y., Mohamed, F. a., & Lavernia, E. J. (2004). Synthesis of nanocrystalline Zn-22 Pct Al using cryomilling. Metallurgical and Materials Transactions A, 35(2), 573–581. doi:10.1007/s11661–004–0368–1

    Article  Google Scholar 

  24. Ralston, K. D., & Birbilis, N. (2010). Effect of grain size on corrosion: a review. Corrosion, 66(7), 75005.

    Article  Google Scholar 

  25. Eizadjou, M., Fattahi, H., Talachi, A. K., Manesh, H. D., Janghorban, K., & Shariat, M. H. (2012). Pitting corrosion susceptibility of ultrafine grains commercially pure aluminium produced by accumulative roll bonding process. Corrosion Engineering, Science and Technology, 47(1), 19–24.

    Article  Google Scholar 

  26. Gupta, R. K., Raman, R. K. S., & Koch, C. C. (2012). Electrochemical characteristics of nano and microcrystalline Fe-Cr alloys. Journal of Materials Science, 47(16), 6118–6124.

    Article  Google Scholar 

  27. Orlov, D., Ralston, K. D., Birbilis, N., & Estrin, Y. (2011). Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Materialia, 59(15), 6176–6186. doi:10.1016/j.actamat.2011.06.033

    Article  Google Scholar 

  28. Sikora, E., Wei, X. J., & Shaw, B. a. (2004). Corrosion behavior of nanocrystalline bulk Al-Mg-based alloys. Corrosion, 60(4), 387–398. doi:10.5006/1.3287748

    Article  Google Scholar 

  29. Song, D., Ma, A. B., Jiang, J. H., Lin, P. H., & Yang, D. H. (2009). Corrosion behavior of ultra-fine grained industrial pure Al fabricated by ECAP. Transactions of Nonferrous Metals Society of China (English Edition), 19(5), 1065–1070. doi:10.1016/S1003–6326(08)60407–0

    Article  Google Scholar 

  30. Totten, G. E., & MacKenzie, D. S. (2003). Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes (Vol. 1). CRC Press.

    Book  Google Scholar 

  31. Wu, X., Xu, W., & Xia, K. (2008). Pure aluminum with different grain size distributions by consolidation of particles using equal-channel angular pressing with back pressure. Materials Science and Engineering A, 493(1–2), 241–245. doi:10.1016/j.msea.2007.06.088

    Article  Google Scholar 

  32. Paydar, M. H., Reihanian, M., Bagherpour, E., Sharifzadeh, M., Zarinejad, M., & Dean, T. a. (2009). Equal channel angular pressing-forward extrusion (ECAP-FE) consolidation of Al particles. Materials and Design, 30(3), 429–432. doi:10.1016/j.matdes.2008.06.012

    Article  Google Scholar 

  33. Chung, M. K., Choi, Y. S., Kim, J. G., Kim, Y. M., & Lee, J. C. (2004). Effect of the number of ECAP pass time on the electrochemical properties of 1050 Al alloys. Materials Science and Engineering A, 366(2), 282–291. doi:10.1016/j.msea.2003.08.056

    Article  Google Scholar 

  34. Son, I. J., Nakano, H., Oue, S., Kobayashi, S., Fukushima, H., & Horita, Z. (2005). Pitting Corrosion Resistance of Ultrafine-Grained Aluminum Processed by Severe Plastic Deformation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 69(10), 892–898. doi:10.2320/jinstmet.69.892

    Article  Google Scholar 

  35. Siegel, R. W., & Fougere, G. E. (1995). Mechanical properties of nanophase metals. Nanostructured Materials, 6(1), 205–216.

    Article  Google Scholar 

  36. Koch, C. C., Morris, D. G., Lu, K., & Inoue, A. (1999). Ductility of nanostructured materials. Mrs Bulletin, 24(02), 54–58.

    Article  Google Scholar 

  37. Youssef, K. M., Scattergood, R. O., Murty, K. L., & Koch, C. C. (2006). Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility. Scripta materialia, 54(2), 251–256.

    Article  Google Scholar 

  38. Sasaki, T. T., Mukai, T., & Hono, K. (2007). A high-strength bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Scripta Materialia, 57(3), 189–192. doi:10.1016/j.scriptamat.2007.04.010

    Article  Google Scholar 

  39. Witkin, D., Lee, Z., Rodriguez, R., Nutt, S., & Lavernia, E. (2003). Al– Mg alloy engineered with bimodal grain size for high strength and increased ductility. Scripta Materialia, 49(4), 297–302. doi:10.1016/S1359–6462(03)00283–5

    Article  Google Scholar 

  40. Lifka, B. (1996). Corrosion of Aluminum and Aluminum Alloys. In P. Schweitzer (Ed.), Corrosion Engineering Handbook (pp. 99–155). Schweitzer: Marcel Dekker.

    Google Scholar 

  41. Birbilis, N., & Buchheit, R. G. (2005). Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys. Journal of The Electrochemical Society, 152(4), B140. doi:10.1149/1.1869984

    Article  Google Scholar 

  42. Lavrenko, V. O., Shvets, V. a., Firstov, S. O., Prima, S. B., Kochubei, V. O., & Adeev, V. M. (2003). Corrosion of titanium-aluminum intermetallides. II. Electrolytic oxidation of TiAl, TiAl 3, and 2-Ti 3Al in sea water. Powder Metallurgy and Metal Ceramics, 42(5–6), 291–296. doi:10.1023/A:1025727814582

    Article  Google Scholar 

  43. Buchheit, R. G., Martinez, M. a., & Montes, L. P. (2000). Evidence for Cu Ion Formation by Dissolution and Dealloying the Al[sub 2]CuMg Intermetallic Compound in Rotating Ring-Disk Collection Experiments. Journal of The Electrochemical Society, 147(1), 119. doi:10.1149/1.1393164

    Article  Google Scholar 

  44. Paljević, M. (1991). Non-selective oxidation of ZrAl3. Journal of the Less Common Metals, 175(2), 289–294. doi:10.1016/0022–5088(91)90014-U

    Article  Google Scholar 

  45. Buchheit, R. G. (1997). Local Dissolution Phenomena Associated with S Phase (Al[sub 2]CuMg) Particles in Aluminum Alloy 2024-T3. Journal of The Electrochemical Society, 144(8), 2621. doi:10.1149/1.1837874

    Article  Google Scholar 

  46. Gupta, R. K., Sukiman, N. L., Fleming, K. M., Gibson, M. a., & Birbilis, N. (2012). Electrochemical Behavior and Localized Corrosion Associated with Mg2Si Particles in Al and Mg Alloys. ECS Electrochemistry Letters, 1(1), C1–C3. doi:10.1149/2.002201eel

    Article  Google Scholar 

  47. Zamin, M. (1981). The role of Mn in the corrosion behavior of Al-Mn alloys. Corrosion, 37(11), 627–632.

    Article  Google Scholar 

  48. Moffat, T. P. (1993). Pitting Corrosion of Electrodeposited Aluminum-Manganese Alloys. Journal of The Electrochemical Society, 140(10), 2779. doi:10.1149/1.2220910

    Article  Google Scholar 

  49. Ruan, S., & Schuh, C. a. (2009). Electrodeposited Al-Mn alloys with microcrystalline, nanocrystalline, amorphous and nano-quasicrystalline structures. Acta Materialia, 57(13), 3810–3822. doi:10.1016/j.actamat.2009.04.030

    Article  Google Scholar 

  50. Sukiman, N. L., Shi, H., Gupta, R. K., Buchheit, R. G., & Birbilis, N. (2013). Electrochemical and Corrosion Response of Commercially Pure Aluminum Alloyed with Binary Additions of Strontium. Journal of the Electrochemical Society, 160(8), C299–C304. doi:10.1149/2.001308jes

    Article  Google Scholar 

  51. Gupta, R. K., Wang, Y., Zhang, R., Sukiman, N. L., Davies, C. H. J., & Birbilis, N. (2013). Imparting sensitization resistance to an Al-5Mg alloy via neodymium additions. Corrosion, 69(1), 4–8. doi:10.5006/0833

    Article  Google Scholar 

  52. Gupta, R. K., Zhang, R., & Birbilis, N. (2014). Theoretical Study of the Influence of Microalloying on Sensitization of AA5083 and Moderation of Sensitization of a Model Al-Mg-Mn Alloy via Sr Additions, 9312(April), 28–29.

    Google Scholar 

  53. Wang, S. C., & Starink, M. J. (2005). Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys, 50(4), 193–215. doi:10.1179/174328005X14357

    Google Scholar 

  54. Ralston, K. D., Birbilis, N., Weyland, M., & Hutchinson, C. R. (2010). The effect of precipitate size on the yield strength-pitting corrosion correlation in Al-Cu-Mg alloys. Acta Materialia, 58(18), 5941–5948. doi:10.1016/j.actamat.2010.07.010

    Article  Google Scholar 

  55. Ralston, K. D., Birbilis, N., Cavanaugh, M. K., Weyland, M., Muddle, B. C., & Marceau, R. K. W. (2010). Role of nanostructure in pitting of Al-Cu-Mg alloys. Electrochimica Acta, 55(27), 7834–7842. doi:10.1016/j.electacta.2010.02.001

    Article  Google Scholar 

  56. Johnson, W. K. (1971). Recent Developments in Pitting Corrosion of Aluminium. British Corrosion Journal, 6(5), 200–204.

    Article  Google Scholar 

  57. Dunford, T., & Wilde, B. (1987). The use of quantitative microscopy in studying the localized corrosion of aluminum 7075. Field metallography, failure analysis, and metallography, 263–272.

    Google Scholar 

  58. Lunarska, E., Trela, E., & Wska, Z. S. (1987). Pitting Corrosion of Powder Metallurgy AIZnMg Alloys *, 43(4), 219–228.

    Google Scholar 

  59. Lyndon, J. a., Gupta, R. K., Gibson, M. a., & Birbilis, N. (2013). Electrochemical behaviour of the β-phase intermetallic (Mg2Al3) as a function of pH as relevant to corrosion of aluminium-magnesium alloys. Corrosion Science, 70, 290–293. doi:10.1016/j.corsci.2012.12.022

    Article  Google Scholar 

  60. Wei, R. P., Liao, C., & Gao, M. (1998). A Transmission Electron Microscopy Study of Constituent- Particle-Induced Corrosion in 7075-T6 and 2024-T3 Aluminum Alloys. Metallurgical and Materials Transactions A, 29(April), 1153–1160. doi:10.1007/s11661–998–0241–8

    Article  Google Scholar 

  61. Dorin, T., Stanford, N., Birbilis, N., & Gupta, R. K. (2015). Influence of cooling rate on the microstructure and corrosion behavior of Al-Fe alloys. Corrosion Science, 100, 396–403. doi:10.1016/j.corsci.2015.08.017

    Article  Google Scholar 

  62. Belov, N. A., Aksenov, A. A., & Eskin, D. G. (2002). Iron in aluminium alloys: impurity and alloying element. CRC Press.

    Google Scholar 

  63. Farhat, Z. N., Ding, Y., Northwood, D. O., & Alpas, a. T. (1996). Effect of grain size on friction and wear of nanocrystalline aluminum. Materials Science and Engineering A, 206(2), 302–313. doi:10.1016/0921–5093(95)10016–4

    Article  Google Scholar 

  64. Speidel, M. (1975). Stress corrosion cracking of aluminum alloys. Metallurgical Transactions A, 6(4), 631–651. doi:10.1007/BF02672284

    Article  Google Scholar 

  65. Ma, Z., Samuel, a. M., Samuel, F. H., Doty, H. W., & Valtierra, S. (2008). A study of tensile properties in Al-Si-Cu and Al-Si-Mg alloys: Effect of???-iron intermetallics and porosity. Materials Science and Engineering A, 490, 36–51. doi:10.1016/j.msea.2008.01.028

    Article  Google Scholar 

  66. Xu, C., Furukawa, M., Horita, Z., & Langdon, T. G. (2003). Using ECAP to achieve grain refinement, precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminum alloy. Acta Materialia, 51(20), 6139–6149. doi:10.1016/S1359–6454(03)00433–6

    Article  Google Scholar 

  67. Birbilis, N., Zhang, R., Lim, M. L. C., Gupta, R. K., Davies, C. H. J., Lynch, S. P., … Scully, J. R. (2012). Quantification of sensitization in AA5083-H131 via imaging Ga-embrittled fracture surfaces. Corrosion, 69(4), 396–402.

    Article  Google Scholar 

  68. Birbilis, N. (2015). The influence of grain size and grain orientation on sensitisation in AA5083. Corrosion.

    Google Scholar 

  69. Zhang, Z., Hosoda, S., Kim, I. S., & Watanabe, Y. (2006). Grain refining performance for Al and Al-Si alloy casts by addition of equal-channel angular pressed Al-5 mass% Ti alloy. Materials Science and Engineering A, 425(1–2), 55–63. doi:10.1016/j.msea.2006.03.018

    Article  Google Scholar 

  70. Endres, F., Bukowski, M., Hempelmann, R., & Natter, H. (2003). Electrodeposition of nanocrystalline metals and alloys from ionic liquids. Angewandte Chemie International Edition, 42(29), 3428–3430.

    Article  Google Scholar 

  71. El Abedin, S. Z., Giridhar, P., Schwab, P., & Endres, F. (2010). Electrodeposition of nanocrystalline aluminium from a chloroaluminate ionic liquid. Electrochemistry Communications, 12(8), 1084–1086.

    Article  Google Scholar 

  72. Pinto, E. M., Ramos, a. S., Vieira, M. T., & Brett, C. M. a. (2010). A corrosion study of nanocrystalline copper thin films. Corrosion Science, 52(12), 3891–3895. doi:10.1016/j.corsci.2010.08.001

    Article  Google Scholar 

  73. Lu, H. B., Li, Y., & Wang, F. H. (2006). Improved corrosion behavior of nanocrystalline Cu-20Zr films in HCl solution. Thin Solid Films, 510(1–2), 197–202. doi:10.1016/j.tsf.2006.01.009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Esquivel, J., Gupta, R.K. (2016). Simultaneous Improvement of Mechanical and Corrosion Properties of Aluminum Alloys. In: Williams, E. (eds) Light Metals 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-48251-4_26

Download citation

Publish with us

Policies and ethics