Skip to main content

Cyclic Strain Resistance, Deformation and Fracture Behavior of a Novel Alloy Steel

  • Chapter
Fatigue of Materials III

Abstract

In this paper, the results of a study on microstructural influences on cyclic strain response, deformation and fracture behavior of an alloy steel is presented Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was observed to be the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level this alloy steel revealed fracture to be mixed-mode with features reminiscent of “locally” ductile and brittle failure mechanisms. The mechanisms governing strain response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully-reversed strain cycling, magnitude of cyclic strain amplitude, and resultant fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.S. Pascover and S.J. Matas: Structure and Properties of Ultra-High Strength Steels, ASTM STP 370, ASTM, Philadelphia, USA, 1965, p. 370.

    Google Scholar 

  2. A. J. Baker, E. J. Laura and R. P. Wei in Structure and Properties of Ultrahigh Strength Steels, ASTM STP 370, ASTM,Philadelphia, PA, 1965, p. 3.

    Google Scholar 

  3. Strength Materials (edited by V.F. Zackay) John Wiley and Sons, New York, USA, 1965, p. 199,

    Google Scholar 

  4. B. R. Banerjee., Structure and Properties of Ultrahigh Strength Steels, ASTM, STP 370, ASTM, Philadelphia, PA, 1965, p. 94.

    Google Scholar 

  5. G.E. Pellissier: Engineering Fracture Mechanics, 1968, Vol. 1, pp. 55–65.

    Article  Google Scholar 

  6. John R. Lowe, Jr.: Engineering Fracture Mechanics, 1969, Vol. 1, pp. 55–65.8

    Google Scholar 

  7. V.F. Zackay, E.R. Parker, R.D. Goolsby and W.E. Wood: Nature Physical Science, 1972, Vol. 236, No. 68, pp. 108–115.

    Google Scholar 

  8. D. Huang and G. Thomas: Metallurgical Transactions, 1972, Vol. 2, p. 1587

    Google Scholar 

  9. R.O. Ritchie, B. Francis and W.L. Server: Metallurgical Transactions, 1976, Vol. 7A, pp. 831–841.

    Article  Google Scholar 

  10. J.L. Youngblood and M. Raghavan: Metallurgical Transaction, Vol. 8A, 1977, pp. 1439–1445.

    Article  Google Scholar 

  11. G.Y. Lai, W.E. Wood, R.A. Clark, V.F. Zackay, E.R. Parker, Metallurgical Transactions. 5 (1974), 1663–1670.

    Article  Google Scholar 

  12. G.Y. Lai, Materials Science Engineering, 19 (1975) 153–156.

    Article  Google Scholar 

  13. F. Zia Ebrahimi, G. Krauss, Metallurgical Transactions 14A (1983) 1109–1119.

    Article  Google Scholar 

  14. M. Sudo abd T. Iwai: International Journal of ISIJ, Vol. 23, 1983, pp. 284–302.

    Google Scholar 

  15. M. Sudio, S. Hashimoto, S. Kambe: International Journal ISIJ, Vol. 23, 1983, pp. 303–311.

    Article  Google Scholar 

  16. F. Zia Ebrahimi, G. Krauss, Acta Metallurgica. 32 (1984) 1767–1777.

    Article  Google Scholar 

  17. I. Kim, S. Rachel and W. Dahl: Steel Research, Vol. 58, 1987, pp. 186–190.

    Google Scholar 

  18. B.Y. Choi, G. Krauss, D.K. Matlock, Bainite formation and deformation behavior in an intercritically annealed Fe-1.0Mn-0.09C steel, Scripta Metallurgica, Vol. 22, 1988, pp. 1575–1580.

    Article  Google Scholar 

  19. B.C. Kim, S. Lee, D.Y. Lee, N.J. Kim, Metallurgical Transactions, 22A (1991) 1889–1892.

    Article  Google Scholar 

  20. D.K. Matlock and G. Krauss, Observation of deformation and transformation behavior of retained austenite in a 0.14C-1.2Si-Mn steel with ferrite-bainite-austenite structure, Materials Science and Engineering A, Volume 165, Issue 1, 25 June 1993, pp 1–8

    Article  Google Scholar 

  21. Application of Fracture Toughness Parameters to Structural Metals, edited by Herman Greenberg, Gordon and Breach, New York, USA, 1966.

    Google Scholar 

  22. R.O. Ritchie, B. Francis, W.L. Server, Metallurgical Transactions, 7A (1976) 831–838.

    Article  Google Scholar 

  23. W.E. Wood, Metallurgical Transactions, 8A (1977) 1195–1199.

    Article  Google Scholar 

  24. R.O. Ritchie, R.M. Horn, Metallurgical Transactions, 9A (1978), pp. 331–341.

    Article  Google Scholar 

  25. B.V. Narasimha Rao, G. Thomas, Metallurgical Transactions, 11A (1980) 441–457.

    Article  Google Scholar 

  26. D. Thomas, D. Schmatz and W.W. Gerberich: in High Strength Materials (Edited by: V.F. Zackay) John Wiley and Sons, New York, USA, 1965, pp. 199–209

    Google Scholar 

  27. R. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Second Edition, John Wiley and Sons, 1983,

    Google Scholar 

  28. ASTM E-8–06: Tensile Testing of Metallic Materials, American Society of Testing and Materials, Philadelphia, PA, 2006.

    Google Scholar 

  29. L. F. Coffin, Jr., and J.F. Travernelli: “The Cyclic Straining and Fatigue of Metals”, Transactions TMS-AIME, Vol. 215 (5), pp. 794–806.

    Google Scholar 

  30. S.S. Manson, and M. H. Hirschberg, “Fatigue Behavior of Strain Cycling in the Low and Intermediate Cycle Range,” 10th Sagamore Army Materials Research Conference, Raquette Lake, NY, August 13–16, 1963.

    Google Scholar 

  31. T. H. Topper, B. I. Sandor, and J. Morrow, “Cumulative Fatigue Damage Under Strain Control” Journal of Materials, Vol. 4, 1969, pp. 189–199.

    Google Scholar 

  32. S. S. Manson: NASA Technical Note, National Aeronautics and Space Administration, 1954, pp 2933–2940.

    Google Scholar 

  33. K. Manigandan, and T. S. Srivatsan: Journal of Strain Analysis for Design (in review) 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Manigandan, K., Srivatsan, T.S., Vasudevan, V.K., Tammana, D., Poorbangi, B. (2014). Cyclic Strain Resistance, Deformation and Fracture Behavior of a Novel Alloy Steel. In: Srivatsan, T.S., Imam, M.A., Srinivasan, R. (eds) Fatigue of Materials III. Springer, Cham. https://doi.org/10.1007/978-3-319-48240-8_9

Download citation

Publish with us

Policies and ethics