Skip to main content

On the Role of Plasticity-Induced Fatigue Crack Closure in High-Strength Steels

  • Chapter
Book cover Fatigue of Materials III
  • 1038 Accesses

Abstract

Plasticity-induced crack closure (PICC) has long been focused as supposedly controlling factor of fatigue crack growth (FCG). However, when the plane-strain near-tip constraint is approached, PICC lacks of straightforward evidence, so that its significance in FCG, and even the very existence, remain debatable. To add insights into this matter, large-deformation elastoplastic simulations of plane-strain crack under constant amplitude load cycling at different load ranges and ratios, as well as with an overload, have been performed. Modeling visualizes the Laird-Smith conceptual mechanism of FCG by plastic blunting and re-sharpening. Simulation reproduces the experimental trends of FCG concerning the roles of stress intensity factor range and overload, but PICC has never been detected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Overview”, Advances in Fatigue Crack Closure Measurement and Analysis, ASTM STP 1343, R.C. McClung, J.C. Newman, Eds., ASTM International, West Gonshohocken, 1999, p. xi.

    Google Scholar 

  2. Ritchie, R. O., “Mechanisms of crack propagation in ductile and brittle solids,” Int. J. of Fract.,Vol. 100, 1999, pp. 55–83.

    Article  Google Scholar 

  3. Louat, N., Sadananda, K., Duesbery, M. and Vasudevan, A. K., “A Theoretical Evaluation of Crack Closure,” Met. Trans., Vol. A24, 1993, pp. 2225–2232.

    Article  Google Scholar 

  4. Vasudevan, A. K., Sadananda, K. and Glinka, G., “Critical Parameters for Fatigue Damage,” Int. J. of Fatigue, Vol. 23, 2001, pp. S39-S53.

    Article  Google Scholar 

  5. Elber, W., “Fatigue Crack Growth under Cyclic Tension,” Eng. Fract. Mech., Vol. 2, 1970, pp. 37–45.

    Article  Google Scholar 

  6. Macha, D. E., Corbly, D. M. and Jones, J. W., “On the Variation of Fatigue-Crack- Opening Load with Measurement Location,” Exp. Mech., Vol. 19, 1979, pp. 207–213.

    Article  Google Scholar 

  7. Xu Yigeng, Gregson, P. J. and Sinclair, I., “Systematic Assessment of Compliance-Based Crack Closure Measurements in Fatigue,” Mater. Sci. and Eng., Vol. A284, 2000, pp. 114–125.

    Article  Google Scholar 

  8. Deshpande, V. S., Needleman, A. and van der Giessen, E., “A Discrete Dislocation Analysis of Near-Threshold Fatigue Crack Growth,” Acta Mater., Vol. 49, 2001, pp. 3189–3203.

    Article  Google Scholar 

  9. Pippan, R., Riemelmoser, F. O., “Visualization of the Plasticity-Induced Crack Closure under Plane Strain Conditions,” Eng. Fract. Mech.,Vol. 60, 1998, pp. 315–322.

    Article  Google Scholar 

  10. Bjerkén, C., Melin, S., “Growth of a Short Fatigue Crack – A Long Term Simulation Using a Dislocation Technique,” Int. J. of Solids and Struct.,” Vol. 46, 2009, pp. 1196–1204.

    Article  Google Scholar 

  11. Budiansky, B., Hutchinson, J. W., “Analysis of Closure in Fatigue Crack Growth,” J. of Appl. Mech., Vol. 45, 1978, pp. 267–276.

    Article  Google Scholar 

  12. Noroozi, A. H., Glinka, G. and Lambert, S., “Prediction of fatigue Crack Growth under Constant Amplitude Loading and a Single Overload Based on Elasto-Plastic Crack Tip Stresses and Strains,” Eng. Fract. Mech., Vol. 75, 2008, pp. 188–206.

    Article  Google Scholar 

  13. McClung, R. C., Thacker, B. H. and Roy, S., “Finite Element Visualisation of Fatigue Crack Closure in Plane Stress and Plane Strain,” Int. J. of Fract., Vol. 50, 1991, pp. 27–9.

    Google Scholar 

  14. Toribio, J., Kharin, V., “Large Crack-Tip Deformations and Plastic Crack Advance During Fatigue,” Mater. Lett., Vol. 61, 2007, pp. 964–967.

    Article  Google Scholar 

  15. Ellyin, F., Wu, J., “Elastic-Plastic Analysis of a Stationary Crack Under Cyclic Loading and Effect of Overload,” Int. J. of Fract., Vol. 56, 1992, pp. 189–208.

    Article  Google Scholar 

  16. Wu, J., Ellyin, F., “A Study of Fatigue Crack Closure by Elastic-Plastic Finite Element for Constant-Amplitude Loading,” Int. J. of Fract., Vol. 82, 1996. pp, 43–65.

    Article  Google Scholar 

  17. Levkovitch, V., Sievert, R. and Svendsen, B., “Simulation of Fatigue Crack Propagation in Ductile Metals by Blunting and Re-sharpening,” Int. J. of Fract., Vol. 136, 2005, pp. 207–220.

    Article  Google Scholar 

  18. Toribio, J., Kharin, V., 1998, “High-Resolution Numerical Modelling of Stress-Strain Fields in the Vicinity of a Crack Tip Subjected to Fatigue,” Fracture from Defects, EMAS, 1998, pp. 1059–1064.

    Google Scholar 

  19. Toribio, J., Kharin, V., “Role of Fatigue Crack Closure Stresses in Hydrogen Assisted Cracking,” Advances in Fatigue Crack Closure Measurement and Analysis, ASTM STP 1343, R.C. McClung, J.C. Newman, Eds., ASTM International, West onshohocken, 1999. p. 440.

    Google Scholar 

  20. Toribio, J., Kharin, V., “Finite Deformation Analysis of the Crack-Tip Fields under Cyclic Loading,” Int. J. of Solids and Struct., Vol. 46, 2009, pp. 1937–1952.

    Article  Google Scholar 

  21. Roychowdhury, S., Dodds, R. H., “A Numerical Investigation of 3-D Small-Scale Yielding Fatigue Crack Growth,” Eng. Fract. Mech., Vol. 70, 2003, pp. 2363–2383.

    Article  Google Scholar 

  22. Tvergaard, V., “On Fatigue Crack Growth in Ductile Materials by Crack-Tip Blunting,” J. Mech. and Phys. of Solids, Vol. 52, 2004, pp. 2149–2166.

    Article  Google Scholar 

  23. Tvergaard, V., “Overload Effects in Fatigue Crack Growth by Crack-Tip Blunting,” Int. J. of Fatigue, Vol. 27, 2005, pp. 1389–1397.

    Article  Google Scholar 

  24. Lei, Y., “Finite Element Crack Closure Analysis of a Compact Tension Specimen,” Int. J. of Fatigue, Vol. 30, 2008, pp. 21–31.

    Article  Google Scholar 

  25. Lynn, A. K., DuQuesnay, D. L., “Computer Simulation of Variable Amplitude Fatigue Crack Initiation Behaviour Using a New Strain-Based Cumulative Damage Model,” Int. J. of Fatigue, Vol. 24, 2002, pp. 977–986.

    Article  Google Scholar 

  26. Nguyen, O., Repetto, E., Ortiz, M. and Radovitzky, R., “A Cohesive Model of Fatigue Crack Growth,” Int. J. of Fract., Vol. 110, 2001, pp. 351–369.

    Article  Google Scholar 

  27. Chalant, G., Remy, L., “Model of Fatigue Crack Propagation by Damage Accumulation at the Crack Tip,” Eng. Fract. Mech., Vol. 18, 1983, pp. 939–952.

    Article  Google Scholar 

  28. Chan, K. S., Lankford, J., “A Crack Tip Strain Model for the Growth of Small Fatigue Cracks,” Scripta Met., Vol. 17, 1983, pp. 529–532.

    Article  Google Scholar 

  29. Fan, F., Kalnaus, S. and Jiang, Y., “Modelling of Fatigue Crack Growth of Stainless Steel 304L,” Mech. of Mater., Vol. 40, 2008, pp. 961–973.

    Article  Google Scholar 

  30. Hurtley, P. J., Evans, W. J. , “A New Method for Predicting Fatigue Crack Propagation Rates,”. Mater Sci. and Eng., Vol. A466, 2007, pp. 265–273.

    Article  Google Scholar 

  31. Laird, C., Smith, G. C., “Crack Propagation in High Stress Fatigue,” Phil. Mag., Vol. 8, 1962, pp. 847–857.

    Article  Google Scholar 

  32. Pelloux, R. M. N. , “Crack Extension by Alternating Shear,” Eng. Fract. Mech., Vol. 1, 1970, pp. 697–704.

    Article  Google Scholar 

  33. Neumann, P., “New Experiments Concerning the Slip Process at Propagating Fatigue Cracks,” Acta Met., Vol. 22, 1974, pp. 1155–1165.

    Article  Google Scholar 

  34. Suresh S., Fatigue of Materials, Cambridge University Press, Cambridge, 1991. p. 617.

    Google Scholar 

  35. Riemelmoser, F. O., Pippan, R. and Stüwe, H. P., “An argument for a cycle-by-cycle propagation of fatigue cracks at small stress intensity ranges,” Acta Mater. Vol. 46, 1998, pp. 1793–1799.

    Article  Google Scholar 

  36. Kanninen, M.F., Popelar, C.H., Advanced Fracture Mechanics, Oxford University Press, New York, 1985. p. 562.

    Google Scholar 

  37. McMeeking, R. M., “Finite Deformation Analysis of Crack Tip Opening in Elastic-Plastic Materials and Implications for Fracture,” J. Mech. and Phys. of Solids, Vol 25, 1977, pp. 357–381.

    Article  Google Scholar 

  38. Needleman, A., Tvergaard, V., “Crack-Tip Stress and Deformation Fields in a Solid With Vertex on its Yield Surface,” Elastic-Plastic Fracture: Second Symposium Vol. 1 — Inelastic Crack Analysis, ASTM STP 803, C.F. Shih, J.P. Gudas, Eds., ASTM International, 1983, p. 80.

    Google Scholar 

  39. Rice, J. R., McMeeking, R. M, Parks, D. M. and Sorensen, E. P., “Recent Finite Element Studies in Plasticity and Fracture Mechanics”. Comput Meth. Applied Mech. and Eng., Vol. 17/18, 1979, pp. 411–442.

    Article  Google Scholar 

  40. Handerhan, K. J., Garrison, W. M., Jr., “A Study of Crack Tip Blunting and The Influence of Blunting Behavior on the Fracture Toughness of Ultra High Strength Steels,” Acta Met. et Mater., Vol. 40, 1992, pp. 1337–1355.

    Article  Google Scholar 

  41. Savruk, M. P., Stress Intensity Factors in Solids With Cracks, Naukova Dumka, Kiev, 1988. p. 619

    Google Scholar 

  42. Toribio, J., Kharin, V., “Comments on Simulations of Fatigue Crack Propagation by Blunting and Re-sharpening: The Mesh Sensitivity,” Int. J. of Fract., Vol. 140, 2006, pp. 285–292.

    Article  Google Scholar 

  43. Hill, R., “Acceleration waves in solids,” J. Mech. and Phys. Of Solids, Vol. 10, 1962, pp. 1–16.

    Article  Google Scholar 

  44. Rice, J. R., 1977, “The localization of plastic deformation,” Theoretical and Applied Mechanics, North-Holland, Amsterdam, 1977, p. 207–220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Minerals, Metals & Materials Society

About this chapter

Cite this chapter

Toribio, J., Kharin, V. (2016). On the Role of Plasticity-Induced Fatigue Crack Closure in High-Strength Steels. In: Srivatsan, T.S., Imam, M.A., Srinivasan, R. (eds) Fatigue of Materials III. Springer, Cham. https://doi.org/10.1007/978-3-319-48240-8_16

Download citation

Publish with us

Policies and ethics