Skip to main content

Stick Slip Response of Dislocation Core

  • Conference paper
TMS 2014: 143rd Annual Meeting & Exhibition
  • 3146 Accesses

Abstract

By means of atomistic simulations, we demonstrate that a dislocation core exhibits intermittent quasistatic restructuring during incremental shear within the same Peierls valley. This can be regarded as a stick-slip transition, which is also reproduced for a one-dimensional Frenkel-Kontorova (FK) chain. However, on a sub-Burgers vector scale of length, it is very difficult to assign a sense of unidirectional motion of dislocation within the same Peierls valley and the conventional techniques of describing the dislocation core position lacks the essential resolution. In this scenario, we have applied the technique of principal component (PCA) analysis in an innovative way to establish the correspondence between a real physical system and its ideal one-dimensional model. Our analysis show that the projections of the atomic trajectories on the principle directions further corroborate the efficacy of the one-dimensional FK chain in revealing the complex three-dimensional structure of the dislocation core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Hirth and J. Lome, Theory of Dislocations (John Wiley and Sons., New York, 1982).

    Google Scholar 

  2. R. E. Peierls, “The size of a dislocation”, Proc. Phys. Soc. 52 (1940) 34–37.

    Article  Google Scholar 

  3. Jian N. Wang, “A new modification of the formulation of Peierls stress”, Acta Mater. 44 (1996) 1541–1546.

    Article  Google Scholar 

  4. I. T. Jolliffe, Principle Component Analysis (Springer-Verlag, New York, 2002).

    Google Scholar 

  5. Simulations are performed using the MD++ code available at http://micro.stanford.edu.

  6. M. W. Finnis and J. E. Sinclair, “A Simple Empirical N-body Potential for Transition Metals”, Phil. Mag. A 50 (1984), 45–55.

    Article  Google Scholar 

  7. G. J. Ackland and R. Thetford, “An improved N-body semi-empirical model for body-centred cubic transition metals”, Phil. Mag. A 56 (1987) 15–30.

    Article  Google Scholar 

  8. F. Ercolessi and J. B. Adams, “Interatomic Potentials from First-Principles Calculations: The Force-Matching Method”, Europhys. Lett. 26 (1994) 583–588.

    Article  Google Scholar 

  9. S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys”, Phys. Rev. B 33 (1986) 7983–7991.

    Article  Google Scholar 

  10. V. V. Bulatov and W. Cai, Computer Simulations of Dislocations (Oxford University Press, Oxford, 2006).

    Google Scholar 

  11. R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Core structure, dislocation energy and Peierls stress for 1/3(1120) edge dislocations with (0 0 01) and {1 100} in a-Zr”, Mater. Sci. Engg. A 400–101 (2005) 45–48.

    Article  Google Scholar 

  12. O. M. Braun, Nicola Manini, and Erio Tosatti, “Size Scaling of Static Friction”, Phys. Rev. Lett. 110(2013)085503–1-5.

    Google Scholar 

  13. A. Benassi, A. Vanossi, G. E. Santoro, and E. Tosatti, “Sliding over a Phase Transition”, Phys. Rev. Lett. 106 (2011) 256102–1-4.

    Google Scholar 

  14. O. M. Braun and J. Röder, “Transition from Stick-Slip to Smooth Sliding: An Earthquakelike Model”, Phys. Rev. Lett. 88 (2002) 096102–1-4.

    Google Scholar 

  15. T. B. Mitchell, J. J. Bollinger, W. M. Itano, and D. H. E. Dubin, “Stick-Slip Dynamics of a Stressed Ion Crystal”, Phys. Rev. Lett. 87 (2001) 183001–1-4.

    Google Scholar 

  16. O. M. Braun and Y. S. Kivshar, The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Springer-Verlag, New York, 2004).

    Book  Google Scholar 

  17. Mishreyee Bhattacharya, Amlan Dutta, and Parthasarathi Barat, Quasistatic Stick-slip of a dislocation core and the Frenkel-Kontorova chain, Phys. Rev. B 87 (2013) 214107–1-6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Bhattacharya, M., Dutta, A., Barat, P. (2014). Stick Slip Response of Dislocation Core. In: TMS 2014: 143rd Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48237-8_34

Download citation

Publish with us

Policies and ethics