Skip to main content

Optical Properties Of Cd1-xZnxSe From Density Functional Theory

  • Conference paper
TMS 2014: 143rd Annual Meeting & Exhibition

Abstract

Diluted magnetic semiconductor is used in a wide spectrum of optoelectronic devices, photovoltaic solar cells, laser screen materials and various luminescence devices, etc. Cd1-xZnxSe is one of them, especially important due to variation of its electronic and optical properties by changing the Cd:Zn ratio. In this paper we have applied the full-potential linear-augmented plane wave (FP-LAPW) method within the frame work of the density functional theory (DFT) for structural, electronic, and optical properties calculations for Cd1-xZnxSe. For the purpose of exchange-correlation energy (Exc) determination in Kohn-Sham calculation, the standard local density approximation (LDA) formalism has been utilized. Murnaghan's equation of state (EOS) has been used for volume optimization by minimizing the total energy with respect to the unit cell volume. With the knowledge of electronic density of states (DOS) optical responses are calculated. The strong interband transitions between the Se s state and Zn 3d states play the main role in the optical response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Coe, W.-K. Woo, M. Bawendi and V. Bulovic, “Electroluminescence from Single Monolayers of Nanocrystals in Molecular Organic Devices,” Nature, 420 (2002), 800–803.

    Article  Google Scholar 

  2. N. Tessler, et al., “Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes,” Science, 295 (2002), 1506–1508.

    Article  Google Scholar 

  3. D. Gal, G. Hodes, D. Hariskos, D. Braunger and H.-W. Schock, “Size-Quantized CdS Films in Thin Film CuInS2 Solar Cells,” Applied Physics Letters, 73 (1998), 3135–3137.

    Article  Google Scholar 

  4. W. U. Huynh, J. J. Dittmer and A. P. Alivisato, “Hybrid Nanorod-Polymer Solar Cells,” Science, 295 (2002), 2425–2427.

    Article  Google Scholar 

  5. V. L. Colvin, M. С Schlamp and A. P. Alivisatos, “Light Emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer,” Nature, 370 (1994), 354–357.

    Article  Google Scholar 

  6. B. O. Dabbousi, M. G. Bawendi and О. О. Rubner, “Electroluminescence from CdSe Quantum-Dot/Polymer Composites,” Applied Physics Letters, 66 (1995), 1316–1318.

    Article  Google Scholar 

  7. B. O'Regan and M. Grätzel, “A Low-Cost, High Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature, 353 (1991), 737–740.

    Article  Google Scholar 

  8. N. С Greenham, X. Peng and A. P. Alivisatos, “Charge Separation and Transport in Conjugated Polymer/Cad- mium Selenide Nanocrystal Composites Studied by Pho- toluminescence Quenching and Photoconductivity,” Synthetic Metals, 84 (1997), 545–546.

    Article  Google Scholar 

  9. C. G. Van de Walle, “Wide-Band-Gap Semiconductors,” North Holland, Amsterdam, 1993.

    Google Scholar 

  10. Jyoti K. Jaiswal, Hedi Mattoussi, J. Matthew Mauro, Sanford M. Simon, “Long-Term Multiple Color Imaging of Live Cells Using Quantum Dot Bioconjugates,” Nature Biotechnology, 21 (2003), 47–51.

    Article  Google Scholar 

  11. H.H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grillo, M. Kobayashi and R. L. Gunshor, “Blue- Green Injection Laser Diodes in (Zn, Cd )Se/ZnSe Quantum Wells,” Applied Physics Letters, 59 (1991), 3619–3621.

    Article  Google Scholar 

  12. Y. Eisen and A. Shor, “CdTe and CdZnTe Materials for Room Temperature X-Ray and Gamma Ray Detectors,” Journal of Crystal Growth, Vol. 184–185, 1998, pp. 1302–1312.

    Article  Google Scholar 

  13. L. Hannachi and N. Bouarissa, “Electronic Structure and Optical Properties of CdSexTel-x Mixed Crystals,” Super lattices and Micro structures, 44 (2008), 794–801.

    Article  Google Scholar 

  14. M. Durandurdu, “Pressure-Induced Phase Transition in Wurtzite ZnS: An ab Initio Constant Pressure Study,” Journal of Physics and Chemistry of Solids, 70 (2009), 645–649.

    Article  Google Scholar 

  15. S. Cui, H. Hu, W. Feng, X. Chen and Z. Feng, “Pressure Induced Phase Transition and Metallization of Solid ZnSe,” Journal of Alloys and Compounds, All (2009), 294–298.

    Google Scholar 

  16. K. Wright and J. D. Gale, “Interatomic Potentials for the Simulation of the Zinc Blende and Wurtzite Forms of ZnS and CdS: Bulk Structure, Properties, and Phase Stability,” Physical Review B, 70 (2004), Article ID: 035211.

    Google Scholar 

  17. S.-H. Wei and S. B. Zhang, “Structure Stability and Carrier Localization in Cdx (x = S, Se, Te) Semiconductors,” Physical Review B, 62 (2000), 6944–6947.

    Article  Google Scholar 

  18. Y. Al-Douri, “The Pressure Effect of the Bulk Modulus Seen by the Charge Density in Cdx Compounds,” Materials Chemistry and Physics, 78 (2003), 625–629.

    Article  Google Scholar 

  19. K. Bouamama, P. Djemia, N. Lebga and K. Kassali, “Ab Initio Calculation of the Elastic Properties and the Lattice Dynamics of the ZnxCdl-xSe Alloy,” Semiconductor Sci-ence and Technology, 24 (2009), Article ID: 045005.

    Google Scholar 

  20. N. Benosman, N. Amrane and H. Aourag, “Calculation of Electronic and Optical Properties of Zinc-Blende ZnxCdl-xSe,” Physica B, 275 (2000), 316–327.

    Article  Google Scholar 

  21. Y. D. Kim, M. V. Klein, S. F. Ren, Y. С Chang, H. Luo, N. Samarth and J. K. Furdyna, “Optical Properties of Zinc Blende CdSe and ZnxCdl-xSe Films Grown on GaAs,” Physical Review B, 49 (1994), 7262–7270.

    Article  Google Scholar 

  22. D. W. Snyder, E. I. Ko, P. J. Sides, and S. Mahajan, “Growth of CdTe by organometallic vapor phase epitaxy in an impinging jet reactor,” Applied Physics Letters, 56 (1990), 1166–1168.

    Article  Google Scholar 

  23. K. Suzuki and S. Adachi, “Optical Constants of CdxZnl-xSe Ternary Alloys,” Journal of Applied Physics, 83 (1998), 1018–1022.

    Article  Google Scholar 

  24. P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136 (1964) B864-B871.

    Article  Google Scholar 

  25. G. K. H. Madsen, P. Plaha, K. Schwarz, E. Sjöstedt, L. Nordström, Phys. Rev. B 64 (2001), Article ID: 195134.

    Google Scholar 

  26. K. Schwarz, P. Blaha, G. K. H. Madsen, “Electronic structure calculations of solids using the WIEN2k package for material sciences,” Comput. Phys. Commun. 147 (2002), 71–76.

    Article  Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 11 (1996), 3865–3868.

    Article  Google Scholar 

  28. F. D. Murnaghan, “On the Theory of the Tension of an Elastic Cylinder,” Proc. Natl. Acad. Sci. USA. 30 (1944), 382–384.

    Article  Google Scholar 

  29. H. J. Monkhorst, J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B. 13 (1976), 5188–5192.

    Article  Google Scholar 

  30. M. A. Omar, “Elementary Solid State Physics: Principles and Applications,” Addison-Wesley Publishing Company, Reading, Massachusetts, 1975.

    Google Scholar 

  31. Y. H. Duan, K. Parlinski, “Density functional theory study of the structural, electronic, lattice dynamical, and thermodynamic properties of Li4Si04 and its capability for CO2 capture,” Phys.Rev. B 84 (2011), Article ID: 104113.

    Google Scholar 

  32. R. Khenata, A. Bouhemadou, M. Sahnoun, A. H. Reshak, H. Baltache, M. Rabah, “Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure,” Comput. Mater. Sci. 38 (2006), 29–38.

    Article  Google Scholar 

  33. L. Hannachi, N. Bouarissa, “Electronic structure and optical properties of CdSexTel-x mixed crystals,” Superlattices Microstruct. 44 (2008), 794–801.

    Article  Google Scholar 

  34. A. Bouhemadou, R. Khenata, “Ab initio study of the structural, elastic, electronic and optical properties of the antiperovskite SbNMg3,” Comput. Mater. Sci. 39 (2007), 803–807.

    Article  Google Scholar 

  35. R. Saniz, L.H. Ye, T. Shishidou, A.J. Freeman, “Structural, electronic, and optical properties of NiA13: First-principles calculations,” Phys. Rev. B 74 (2006), Article ID: 014209.

    Google Scholar 

  36. Y. Shen, Z. Zhou, “Structural, electronic, and optical properties of ferroelectric KTal/2Nbl/203 solid solutions,” J. Appl. Phys. 103 (2008), Article ID: 074113.

    Google Scholar 

  37. E. Deligoz, K. Colakoglu and Y. Ciftci, “Elastic, Electronic, and Lattice Dynamical Properties of CdS, CdSe, and CdTe,” Physica B: Physics of Condensed Matter, Vol. 373, 2006, pp. 124–130.

    Article  Google Scholar 

  38. Z. Nourbakh, “Structural, Electronic and Optical Properties of Znx and Cdx Compounds (x = Se, Te and S) under Hydrostatic Pressure,” Journal of Alloys and Compounds, Vol. 505, 2010, pp. 698–711.

    Article  Google Scholar 

  39. J. Heyd, J. E. Peralta, G. E. Scuseria and R. L. Martin, “Energy Band Gaps and Lattice Parameters Evaluated with the Heyd-Scuseria-Ernzerh of Screened Hybrid Functional,” Journal of Chemical Physics, Vol. 123, 2005, Ar-ticle ID: 174101

    Google Scholar 

  40. J. C Jamieson and H. H. Demarest, “A Note on the Compression of Cubic ZnS,” Journal of Physics and Chemistry of Solids, Vol. 41, No. 9, 1980, pp. 963–964.

    Article  Google Scholar 

  41. F. Benkabou, H. Aourag and M. Certier, “Atomistic Study of Zinc-Blends CdS, CdSe, ZnS, and ZnSe from Molecular Dynamics,” Materials Chemistry and Physics, Vol. 66, 2000, pp. 10–16.

    Article  Google Scholar 

  42. M. L. Cohen, “Calculation of Bulk Moduli of Diamond and Zinc-Blende Solids,” Physical Review B, Vol. 32, 1985, pp. 7988–7991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Sarkar, B.K., Verma, A.S., Pavlendova, G., Banik, I. (2014). Optical Properties Of Cd1-xZnxSe From Density Functional Theory. In: TMS 2014: 143rd Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48237-8_136

Download citation

Publish with us

Policies and ethics