Skip to main content

Arsenic and Antimony Capacities in Ni-Cu Mattes and Slags

  • Conference paper
Celebrating the Megascale

Abstract

A thermodynamic model for a priori predictions of arsenic and antimony impurity capacity in Ni-Cu mattes and slags was developed based on the Reddy-Blander (RB) capacity model. The As and Sb capacities were calculated a-priori considering the RB capacity model in Ni-Cu mattes and FeO-FeO1.5-MgO-CuO0.5-NiO-SiO2 slag at 1573 K and 0.1 to 1 atm partial pressure of SO2. The results showed an excellent agreement between the model calculated and experimental data of arsenic and antimony capacities between the mattes and slag. The impurity capacity model developed here, can be extended for prediction of impurity capacities in multi-component base metal slags and base metal mattes. Such a priori predictions of impurity capacities can lead to develop or improve the efficiency of impurity removal from the base metal smelting, converting and refining processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. G. Reddy, “Emerging Technologies in Extraction and Processing of Metals,” Metallurgical and Materials Transactions B, 34, (2003), 137–152.

    Article  Google Scholar 

  2. R. G. Reddy. “Recovery of Pollution Causing Elements from Copper Slags,” Minor Elements 2000: Processing and Environmental Aspects of As, Sb, Se and Te, C. Young (editor), (SME, Littleton, CO, USA, 2000), 239–249.

    Google Scholar 

  3. M. Nagamori and P. J. Mackey, Metall. Trans. B, 9B, (1978) 255–265.

    Article  Google Scholar 

  4. P. C. Chaubal and H. Y. Sohn, Metall. Trans. B, 17B, (1986), 51–60.

    Article  Google Scholar 

  5. T. Rosenqvist, Principles of Extractive Metallurgy, (McGraw-Hill, N.Y, 1983) 324–342.

    Google Scholar 

  6. J.M. Font, M. Hino and K. Itagaki, “Minor Elements Distribution between Iron-Silicate Base Slag and NisS2-FeS Matte under High Partial Pressures of SO2,” Mater. Trans. JIM, 39, (1998), 834–840.

    Article  Google Scholar 

  7. J.M. Font, M. Hino and K. Itagaki, “Thermodynamic Evaluation of Distribution Behavior of VA Elements in Nickel Matte Smelting,” Metal. Rev. of the MMIJ, 15 (2), (1998), 202–220.

    Google Scholar 

  8. Kimio Itagaki and Akira Yazawa. “Thermodynamic Evaluation of Distribution Behavior of Arsenic, Antimony and Bismuth in Copper Smelting,” Advances in Sulfides Smelting Symposium, H. Y. Sohn, D.B. George and A. D. Zunkel (editor). (TMS, Warrendale, PA, 1983), pp. 119–142.

    Google Scholar 

  9. G. Roghani, Y. Takeda and K. Itagaki, “Phase Equilibrium and Minor Element Distribution between FeOx-SiO2-MgO-Based Slag and Cu2S-FeS Matte at 1573 K under High Partial Pressures of SO2,” Metall. Trans. B, 31, (2000), 705–712.

    Article  Google Scholar 

  10. J.M. Font, M. Hino and K. Itagaki, “Phase Equilibrium and Minor-Element Distribution between NisS2-FeS Matte and Calcium Ferrite slag under High Partial Pressures of SO2,” Metall. Trans. B, 31, (2000) 1231–1239.

    Article  Google Scholar 

  11. U.R. G. Reddy and J. M. Font, “Arsenic Capacities of Copper Smelting Slags”, Metall. Mat. Trans. B, 34B, (2003), 565–571.

    Article  Google Scholar 

  12. J. Font and R. G. Reddy, “Modeling of Impurity Distribution between Mattes and Slags”, Vol. IV- Pvrometallurgy of Copper, C. Diaz, C. Landolt and T. Utigard, (editors), (Copper 2003, Chile, 2003), 301–313.

    Google Scholar 

  13. J. M. Font and R.G. Reddy, “Modeling of Antimonate Capacity in copper and Nickel Smelting Slags,” Trans. Inst. Min. Metall. C, 114, (2005), 160–64.

    Google Scholar 

  14. R. G. Reddy and M. Blander, “Modeling of Sulfide Capacities of Silicate Melts,” Metall, and Mat. Trans.B, 18, (1987), 591–596.

    Article  Google Scholar 

  15. R. G. Reddy and M. Blander, “Sulfide Capacities of MnO-SiO2 Slags,” Metall. Mat. Trans. B, 20, (1989), 137–140.

    Article  Google Scholar 

  16. R. G. Reddy and W. Zhao, 1995, “Sulfide Capacities of Na2O-SiO2 Melts,” Metall. Mat. Trans. B, 32, (1995), 925–928.

    Article  Google Scholar 

  17. R. G. Reddy, “Impurity Capacities in Metallurgical Slags”, Yazawa International Symposium, Materials Processing Fundamentals and New Technologies, F. Kongoli, K. Itagaki, C. Yamauchi and H.Y. Sohn, (editors), (TMS, Warandale, PA, USA, 2003), 1, 25–48.

    Google Scholar 

  18. B. Derin, O. Yucel and R. G. Reddy, “Sulfide Capacity Modeling of FeOx-MO-SiO2 (MO=CaO, MnO, MgO) Melts”, Minerals & Metallurgical Processing, 28 (1), (2010), 33–36.

    Google Scholar 

  19. A. Yahya and R. G. Reddy, “Sulfide Capacities of CaO-MgO-AlO1.5, MgO-MnO-AlO1.5 and CaO-MgO-MnO-AlO1.5 Slags”, Trans. Inst. Min. Metall. C, 120 (1), (2011), 45–48.

    Google Scholar 

  20. B. Derin, O. Yucel, and R. G. Reddy, “Modeling of Sulfide Capacities of Binary Titanate Slags,” EPD Congress. (TMS, Warrandale. PA, USA, 2004), 155–160.

    Google Scholar 

  21. B. Chen, R. G. Reddy and M. Blander, “Sulfide Capacities of CaO-FeO-Si02 Slags,” 3rd International Conference on Molten Slags and Fluxes, The Institute of Metals, (London, UK, 1998), 270–272.22.

    Google Scholar 

  22. A. D. Pelton, G. Eriksson and A. Romero-Serrano, “Calculation of Sulfide Capacities of Multi-component Slags,” Metall. Trans. B, 24, (1993), 817–825.

    Article  Google Scholar 

  23. B. Derin, O. Yucel and R. G. Reddy, “Predicting of sulfide capacities of industrial lead smelting slags”. F. Kongoli and R. G. Reddy (editors), Sohn International Symposium; Advanced Processing of Metals and Materials Volume 1: Thermo and Physicochemical Principles: Non-Ferrous High-Temperature Processing, (TMS Warrendale, PA, USA, 2006), 1, 237–244.

    Google Scholar 

  24. B. Derin and R. G. Reddy, “Sulfur and Oxygen Partial Pressure Ratios Prediction in Copper Flash Smelting Plants using Reddy-Blander Model”, F. Kongoli, K. Itagaki, C. Yamauchi and H.Y. Sohn, (editors), Yazawa International Symposium on Metallurgical and Materials Processing. (TMS, Warandale, PA, USA, 2003), 1, 625–632.

    Google Scholar 

  25. HSC Chemistry software, A. Roine, ver. 4.1, Outokumpu Research Oy, Pori, Finland.

    Google Scholar 

  26. FactSageTM 5.0 software, Thermfact Ltd. (Montreal) and GTT-Technologies (Aachen), 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Reddy, R.G., Font, J.M. (2014). Arsenic and Antimony Capacities in Ni-Cu Mattes and Slags. In: Mackey, P.J., Grimsey, E.J., Jones, R.T., Brooks, G.A. (eds) Celebrating the Megascale. Springer, Cham. https://doi.org/10.1007/978-3-319-48234-7_18

Download citation

Publish with us

Policies and ethics