Skip to main content

Physically-Based Model for Static Recrystallization in AZ31

  • Chapter
Magnesium Technology 2014
  • 1922 Accesses

Abstract

A physically-based model for static recrystallization in alloy AZ31 is presented. The model predicts the kinetics of recrystallization as a function of the applied strain and the annealing temperature. A key feature of the model is the incorporation of the effects of recovery and solute drag on the recrystallization kinetics. In addition, the model attempts to take into account the effect of heterogeneity of the deformed state on recrystallization kinetics. Preliminary experimental studies were carried out in order to estimate the parameters that enter into the model. Grain-growth experiments were carried out on pure Mg, Mg-Al and Mg-Zn alloys in order to estimate the boundary mobility. Recovery kinetics was measured at low temperatures in order to quantify the contribution of recovery to the depletion of the stored energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. S. Zurob et al., Acta Mater., 50 (2002) 3075–3092.

    Article  Google Scholar 

  2. J. W. C. Dunlop et al, J. Nuc. Mater. 336 (2007) 178–186.

    Article  Google Scholar 

  3. K. Rehman and H. S. Zurob, Met. Mater. Tras., 44A (2013) 1862–1871.

    Article  Google Scholar 

  4. F. J. Humphreys, Acta Mater., 45 (1997) 4231–4240.

    Article  Google Scholar 

  5. J. E. Bailey and P.B. Hirsch., Proc. Roy. Soc. London. Series A, 267 (1962) 11–30.

    Article  Google Scholar 

  6. M. Verdier, Y. Brechet and P. Guyot, Acta Mater., 47 (1998) 127–134.

    Article  Google Scholar 

  7. M. Hillert, Acta Metall., 13 (1965) 227–238.

    Article  Google Scholar 

  8. S. Liang et al, 9th Int. Conf. Mg Alloys & Their App (2012) 663–668.

    Google Scholar 

  9. S. Liang, X. Wang and H. S. Zurob, 9th Int. Conf. Mg Alloys & Their App (2012) 1049–1054.

    Google Scholar 

  10. M. Winning et al, Phil. Mag., 90 (2010), 3107–3128.

    Article  Google Scholar 

  11. J. W. Cahn, Acta Metall. Mater., 10 (1962) 789–798.

    Article  Google Scholar 

  12. K. Lucke and K. Detert, Acta Metall., 5, (1957) 628.

    Article  Google Scholar 

  13. Das et al, Mater. Sci. Forum, 765 (2013) 516–520.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Okrutny, P., Liang, S., Meng, L., Zurob, H. (2014). Physically-Based Model for Static Recrystallization in AZ31. In: Alderman, M., Manuel, M.V., Hort, N., Neelameggham, N.R. (eds) Magnesium Technology 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-48231-6_31

Download citation

Publish with us

Policies and ethics