Skip to main content

Indentation Creep Behavior of Mg-10Gd-3Y-0.5Zr (wt.%) Alloy at Elevated Temperatures

  • Chapter
Magnesium Technology 2014
  • 1917 Accesses

Abstract

The indentation creep behavior of a cast Mg-10Gd-3Y-0.5Zr (GW103) alloy was investigated by flat cylindrical indenter at temperatures ranging from 250 to 325 °C and stresses ranging from 80 to 505 MPa. The indentation creep stress exponents varied from 1.36 to 5.10, which were lower at lower temperatures and stresses. The creep activation energies increased from 106.11 kJ/mol to 190.65 kJ/mol with increasing stress. Dislocation-controlled creep was suggested in high temperature and stress regime, while grain boundary sliding could contribute more at lower temperatures and stresses. The zone just beneath the indenter almost maintained the same during indentation creep, while the zone inside cycle segments under the indenter deformed severely. The zone at the edge of the indenter underwent largest stress and strain, resulting in broken of grain boundaries and bending of most intragranular precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Zeumer, B. Mordike and K.U. Kainer (Eds.), Proceedings of the Magnesium Alloys and their Applications, Werkstoff-Information-Sgesellschaft, Wolfsburg, Germany, 1998, pp. 125–132.

    Google Scholar 

  2. L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals, Taylor and Francis, London, UK, 2003, p. 1.

    Google Scholar 

  3. L. Mordike, J. Mater. Process. Tech. 117 (2001) 391–394.

    Article  Google Scholar 

  4. B.L. Mordike, Mater. Sci. Eng. A 324 (2002) 103–112.

    Article  Google Scholar 

  5. I. Anthony, S. Kamado, and Y. Kojima, Mater. Trans. 42 (2001) 1206–1211.

    Article  Google Scholar 

  6. I. Anthony, S. Kamado, and Y. Kojima, Mater. Trans. 42 (2001) 1212–1218.

    Article  Google Scholar 

  7. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, and J.F. Nie, J. Alloy Compd. 421 (2006) 309–313.

    Article  Google Scholar 

  8. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding, J. Alloy Compd. 427 (2007) 316–323.

    Article  Google Scholar 

  9. V. Janik, D.D. Yin, Q.D. Wang, S.M. He, C.J. Chen, Z. Chen, and C.J. Boehlert. Mater. Sci. Eng. A 528 (2011) 3105–3112.

    Article  Google Scholar 

  10. V. Janik, Q.D. Wang, D.D. Yin, and W.J. Ding, Mater. Sci. Forum 675–677 (2011) 487–490.

    Article  Google Scholar 

  11. H. Wang, Q.D. Wang, D.D. Yin, J. Yuan, and B. Ye, Mater. Sci. Eng. A 578 (2013) 150–159.

    Article  Google Scholar 

  12. H. Wang, Q.D. Wang, B. Ye, D.D. Yin, and J. Yuan, Mater. Sci. Forum 765 (2013) 568–573.

    Article  Google Scholar 

  13. S.N.G Chu and J.C.M. Li, J. Mater. Sci. 12 (1977) 2200–2208.

    Article  Google Scholar 

  14. S.N.G. Chu and J.C.M. Li, J. Mater. Sci. 12 (1977) 2214–2222.

    Article  Google Scholar 

  15. E.C. Yu and J.C.M. Li, Phil. Mag. 36 (1977) 811–825.

    Article  Google Scholar 

  16. S.N.G. Chu and J.C.M. Li, Mater. Sci. Eng. A 39 (1979) 1–10.

    Article  Google Scholar 

  17. TH. Hyde, K.A. Yehia, and A.A. Becker, Int. J. Mech. Sci. 35(1993) 451–462.

    Article  Google Scholar 

  18. J.C.M. Li, Mater. Sci. Eng. A 322 (2002) 23–42.

    Article  Google Scholar 

  19. D. Dorner, K. Röller, B. Skrotzki, B. Stöckhert, and G. Eggeier, Mater. Sci. Eng. A 357 (2003) 346–354.

    Article  Google Scholar 

  20. D. Pan and I. Dutta, Mater. Sci. Eng. A 379 (2004) 154–163.

    Article  Google Scholar 

  21. D.H. Sastry, Mater. Sci. Eng. A 409 (2005) 67–75.

    Article  Google Scholar 

  22. Z.F. Yue, Acta Metall. Sin. 41 (2005) 15–18.

    Google Scholar 

  23. Y.J. Liu, B. Zhao, and Z.F. Yue, J. Mech. Strength 30 (2008) 854–859.

    Google Scholar 

  24. Sh. Ansary, R. Mahmudi, and M.J. Esfandyarpour, Mater. Sci. Eng. A 556 (2012) 9–14.

    Article  Google Scholar 

  25. H. Liu, Y. Chen, Y. Tang, S. Wei, and G. Niu, Mater. Sei. Eng. A464A (2007) 124–128.

    Article  Google Scholar 

  26. F. Kabirian and R. Mahmudi, Metall. Mater. Trans. A 40A (2009) 116–27.

    Article  Google Scholar 

  27. A.K. Mondai and S. Kumar, Compos. Sci. Technol. 68 (2008) 3251–3258.

    Article  Google Scholar 

  28. S.S. Vagarali and T.G. Langdon, Acta Metall. 29 (1981) 1969–1982.

    Article  Google Scholar 

  29. S.S. Vagarali and T.G. Langdon, Acta Metall. 30 (1982) 1157–1170.

    Article  Google Scholar 

  30. O.A. Ruano, J. Wadsworth, and O.D. Sherby, Acta Metal. 36 (1988) 1117–1128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qudong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Wang, H., Wang, Q., Yuan, J. (2014). Indentation Creep Behavior of Mg-10Gd-3Y-0.5Zr (wt.%) Alloy at Elevated Temperatures. In: Alderman, M., Manuel, M.V., Hort, N., Neelameggham, N.R. (eds) Magnesium Technology 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-48231-6_16

Download citation

Publish with us

Policies and ethics