Skip to main content

Experiments and Modeling of Fatigue Damage in Extruded Mg AZ61 Alloy

  • Chapter

Abstract

In this study, structure-property relations with respect to fatigue of an extruded AZ61 magnesium alloy were experimentally quantified. Strain-life experiments were conducted in the extruded and transverse orientations under low and high cycle conditions. The cyclic behavior of this alloy displayed varying degrees of cyclic hardening depending on the strain amplitude and the specimen orientation. The fracture surfaces of the fatigued specimens were analyzed using a scanning electron microscope in order to quantify structure-property relations with respect to number of cycles to failure. Intermetallic particles were found to be the source of fatigue initiation on a majority of fracture surfaces. Finally, a multistage fatigue model based on the relative microstructural sensitive features quantified in this study was employed to capture the anisotropic fatigue damage of the AZ61 magnesium alloy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Begum S, Chen DL, Xu S, Luo Alan A. Strain-controlled low-cycle fatigue properties of a newly developed extruded magnesium alloy. Metall Mater Trans A 2008;39A:3014–26.

    Article  Google Scholar 

  2. Begum S, Chen DL, Xu S, Luo Alan A. Low cycle fatigue properties of an extruded AZ31 magnesium alloy. Int J Fatigue 2009;31:726–35.

    Article  Google Scholar 

  3. Begum S, Chen DL, Xu S, Luo Alan A. Low cycle fatigue properties of an extruded AZ31 magnesium alloy. Int J Fatigue 2009;31:726–35.

    Article  Google Scholar 

  4. Lin XZ, Chen DL. Strain controlled cyclic deformation behavior of an extruded magnesium alloy. Mater Sci Eng A 2008;496:106–13.

    Article  Google Scholar 

  5. Lin XZ, Chen DL. Strain hardening and strain-rate sensitivity of an extruded magnesium alloy. J Mater Eng Perform 2008;17:894–901.

    Article  Google Scholar 

  6. Hasegawa S, Tsuchida Y, Yano H, Matsui M. Evaluation of low cycle fatigue life in AZ31 magnesium alloy. Int J Fatigue 2007;29:1839–45.

    Article  Google Scholar 

  7. Suresh S. Fatigue of materials. United Kingdom: Cambridge University Press; 1998

    Book  Google Scholar 

  8. Bernard JD, Jordon JB, Horstemeyer MF, El Kadiri H, Baird J, Lamb D, Luo AA. Structure-property relations of cyclic damage in a wrought magnesium alloy. Scr Mater. In Press, 2010.

    Google Scholar 

  9. Gall K, Biallas G, Maier HJ, Gullett P, Horstemeyer MF, McDowell DL. In-Situ observations of low-cycle fatigue damage in cast AM60B magnesium in an environmental scanning electron microscope. Metall Mater Trans A 2004a;35:321–31.

    Article  Google Scholar 

  10. Gall K, Biallas G, Maier HJ, Gullett P, Horstemeyer MF, McDowell DL, Fan J. In-Situ observations of high cycle fatigue mechanisms in cast AM60B magnesium in vacuum and water vapor environments. Int J Fatigue 2004b;26:59–70.

    Article  Google Scholar 

  11. Gall K, Biallas G, Maier HJ, Horstemeyer MF, McDowell DL. Environmentally influenced microstructurally small fatigue crack growth in cast magnesium. Mater Sci Eng A 2005;3 96:143–54.

    Article  Google Scholar 

  12. Tokaji K, Kamakura M, Ishiizumi Y, Hasegawa N. Fatigue behavior and fracture mechanisim of a rolled AZ31 magnesium alloy. Int J Fatigue 2004;26:1217–24.

    Article  Google Scholar 

  13. Sajuri ZB, Miyashita Y, Hosokai Y, Mutoh Y. Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys. Int J Mech Sci 2006;48:198–209.

    Article  Google Scholar 

  14. McDowell DL, Gall K, Horstemeyer MF, Fan J. Microstructure-based fatigue modeling of cast A356–T6 alloy. Eng Fract Mech 2003;70:49–80.

    Article  Google Scholar 

  15. Bache MR, Evans WJ, Randle V, Wilson RJ. Characterization of mechanical anisotropy in titanium alloys. Mater Sci Eng A 1998;A257:139–44.

    Article  Google Scholar 

  16. Whittaker MT, Evans WJ, Lancaster R, Harrison W, Webster PS. The effect of microstructure and texture on mechanical properties of Ti6–4. Int J Fatigue 2009;31:2022–30.

    Article  Google Scholar 

  17. Chamos AN, Pantelakis SG, Haidemenopoulos GN, Kamoutsi E. Tensile and fatigue behavior of wrought magnesium alloys AZ31 and AZ61. Fatigue Fract Eng Mater Struct 2008;31:812–21.

    Article  Google Scholar 

  18. Xue Y, McDowell DL, Horstemeyer MF, Dale MH, Jordon JB. Microstructure-based multistage fatigue modeling of aluminum alloy 7075-T651. Eng Fract Mech 2007;74:2810–23.

    Article  Google Scholar 

  19. El Kadiri H, Xue Y, Horstemeyer MF, Jordon JB, Wang PT. Identification and modeling of fatigue crack growth mechanisms in a die-cast AM50 magnesium alloy. Acta Mater 2006;54:5061–76.

    Article  Google Scholar 

  20. Horstemeyer MF, Yang N, Gall KA, McDowell DL, Fan J, Gullett P. High cycle fatigue on a die cast AZ91E-T4 magnesium alloy Acta Mater 2004;52:1327–36.

    Google Scholar 

  21. Xue Y, Horstemeyer MF, McDowell DL, El Kadiri H, Fan J. Microstructure-based multistage fatigue modeling of a cast AE44 magnesium alloy. Int J Fatigue 2007;29:666–76

    Article  Google Scholar 

  22. Xue Y, Pascu A, Horstemeyer MF, Wang L, Wang PT. Microporosity effects on cyclic plasticity and fatigue of LENS-processed steel. Acta Mater 2010;58:4029–38.

    Article  Google Scholar 

  23. Jordon JB, Horstemeyer MF, Yang N, Major JF, Gall KA, Fan J. Microstructural inclusion influence on fatigue of a cast A356 aluminum alloy. Metall Mater Trans A 2010;41A:356–363

    Article  Google Scholar 

  24. Xue Y, Burton CL, Horstemeyer MF, McDowell DL, Berry JT. Multistage fatigue modeling of cast A356-T6 and A380-F aluminum alloys. Metall Mater Trans B 2007;38B:601–6.

    Article  Google Scholar 

  25. El Kadiri H, Oppedal AL. A crystal plasticity theory for latent hardening by glide twinning through dislocation transmutation and twin accommodation effects. J Mech Phys Solids 2010;58:613–24

    Article  Google Scholar 

  26. Bernard JD, Jordon JB, Horstemeyer MF. Small fatigue crack growth observations in a wrought magnesium alloy, TMS 2011 Annual Meeting and Exhibition, [submitted].

    Google Scholar 

  27. Bannantine JA, Comer JJ, Handrock JL. Fundamentals of metal fatigue analysis. USA: Prentice Hall; 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Jordon, J.B., Gibson, J.B., Horstemeyer, M.F. (2011). Experiments and Modeling of Fatigue Damage in Extruded Mg AZ61 Alloy. In: Sillekens, W.H., Agnew, S.R., Neelameggham, N.R., Mathaudhu, S.N. (eds) Magnesium Technology 2011. Springer, Cham. https://doi.org/10.1007/978-3-319-48223-1_13

Download citation

Publish with us

Policies and ethics