Skip to main content

Tensile Properties Of Three Preform-Annealed Magnesium Alloy Sheets

  • Chapter
Magnesium Technology 2012

Abstract

Magnesium alloy sheet metal is potentially attractive for use in automotive structural applications due to its high strength-to-weight ratio. However, application has been hindered by the low room-temperature formability of typical sheet alloys. One approach to effectively increase formability is to change the forming process from one which involves a single stamping hit to one which utilizes two hits plus an intemediate anneal (i.e., “preform anneal process” ). The purpose of the intermediate anneal is to restore some of the softness and ductility which were reduced by deformation during the first hit.

In this report, the preform annealing behavior of three rolled magnesium alloy sheets was studied using uniaxial tensile tests. The sheets studied were: conventionally rolled (CR) AZ31B, CR ZEK100, and specially rolled (SPR) AZ31B. The preform annealing process was found to increase the total elongation of all three sheets compared to the elongation in the annealed O-temper. The CR ZEK100 with a thickness of 1.5 mm showed more attractive tensile properties than the 1.6 mm CR AZ31B. Although the SPR AZ31B has a thickness of only 0.7 mm, it still has elongation comparable to the 1.6 mm CR AZ31B

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. Luo, “Magnesium: Current and Potential Automotive Applications”, JOM, February 2002, pp. 42–48.

    Google Scholar 

  2. P.J. Blanchard, G.T. Bretz, S. Subramanian, J.E. de Vries, A. Syvret, A. MacDonald, P. Jolley, “The Application of Magnesium Die Casting to Vehicle Closures”, SAE Paper No. 2005–01-0338

    Book  Google Scholar 

  3. http://media.ford.com/article_display.cfm?article_id=30231.

    Google Scholar 

  4. J.T. Carter, AR Melo, V. Savic, L.G. Hector, Jr., P.E. Krajewski, “Structural Evaluation of an Experimental Aluminum/Magnesium Decklid”, SAE Paper No. 2011–01-0075.

    Google Scholar 

  5. S. Logan, A Kizyma, C. Patterson, S. Rama, “Lightweight Magnesium Intensive Body Structure”, SAE Paper No. 2006–01-0523.

    Book  Google Scholar 

  6. www.superlightcar.com/public/docs/SLC_presentation TRA08 _VW_March08.pdf

    Google Scholar 

  7. A.A. Luo, E.A Nyberg, K. Sadayappan, W. Shi, “Magnesium Front End Research and Development: A Canada-China-USA Collaboration”, in Magnesium Technology 2008, eds. M.O. Pekguleryuz, N.R. Neelameggham, R.S. Beals, and E.A. Nyberg, TMS, Warrendale, PA, 2008, pp. 3–10.

    Google Scholar 

  8. http://en.wikipedia.org/wiki/Porsche_Carrera_GT.

    Google Scholar 

  9. R Verma and J.T. Carter, “Quick Plastic Forming of a Decklid Inner Panel with Commercial AZ31 Mg Sheet”, SAE Paper No. 2006–01-0525.

    Google Scholar 

  10. Automotive Material Data Sheet, AZ31B-0, Issue 1, 2006, Superform Aluminium.

    Google Scholar 

  11. Paul Krajewski, Peter Friedman, Kenneth Oikarinen, Dennis Cedar, “USAMP Project AMD307: Pan Forming of Aluminum and Magnesium”, Paper presented at MS&T’07, September 16–20, 2007, Detroit, Michigan.

    Google Scholar 

  12. Stolfig Group, patents DE 101 56 034.6, DE 102 47 129.0, CN 152 76 83 A, Nr. DE 302 08 803, DE 202 02 591.8

    Google Scholar 

  13. Y. Liu, Y. Li, W. Li, “Stamping Formability of ZE10 Magnesium Alloy Sheets Journal of Rare Earths”, Vol. 25, 2007, pp. 480–484.

    Google Scholar 

  14. J. Zhang, X. Zhang, W. Li, F. Pan, Z. Guo, “Partition of Er among the constituent phases and the yield phenomenon in a semi-continuously cast Mg-Zn-Zr alloy”. Scripta Materialia, Vol. 63, 2010, pp. 367–370.

    Article  Google Scholar 

  15. N. Stanford, D. Atwell, M.R Barnett, “The effect of Gd on the recrystallisation texture and deformation behaviour of magnesium-based alloys”. Acta Materialia, Vol. 58, 2010, pp. 6773–6783.

    Article  Google Scholar 

  16. Raja K. Mishra, Anil K. Gupta, P. Rama Rao, Anil K. Sachdev, Aran M. Kumar, Alan A. Luo, “Influence of cerium on texture and ductility of magnesium alloy extrusions.” In Magnesium Technology 2008, 269–274. Warrendale, PA: The Minerals, Metals & Materials Society, 2008.

    Google Scholar 

  17. J. Bohlen, M.R. Nurnberg, J.W. Senn, D. Letzig, S.R. Agnew, “The texture and anisotropy of magnesium-zinc-rare earth alloy sheets”. Acta Materialia, Vol. 55, 2007, pp. 2101–2112.

    Article  Google Scholar 

  18. T. Al-Samman, X. Li, “Sheet texture modification in magnesium-based alloys by selective rare earth alloying”. Materials Science and Engineering A, Vol. 528, 2011, pp. 3809–3822.

    Article  Google Scholar 

  19. “Development of a New Rolling Process for Commercial Magnesium Alloy Sheets with High Room-temperature Formability”, (Translation of AIST press release of January 26, 2010), http://www.aist.go.ip/aist_e/latest_research/2010/ 20100217/20100217.html.

    Google Scholar 

  20. H. Utsunomiya, T. Sakai, S. Minamiguchi, and H. Koh, “High-speed heavy rolling of magnesium alloy sheets”, Magnesium Technology 2006, edited by A.A. Luo, N.R. Neelameggham, and R.S. Beals, TMS, Warrendale, PA, 2006, pp. 201–204.

    Google Scholar 

  21. B. Beausir, S. Biswas, D.I. Kim, L.S. Toth, S. Suwas, “Analysis of microstructure and texture evolution in pure magnesium during symmetric and asymmetric rolling”, Acta Materialia, Vol. 57, 2009, pp. 5061–5077.

    Article  Google Scholar 

  22. Paul E. Krajewski, Method for production of stamped sheet metal panels, US Patent Application 2005/0199032 Al, September 15, 2005.

    Google Scholar 

  23. Theresa M. Lee, Susan E. Hartfield-Wunsch, Siguang Xu. Demonstration of the Preform Anneal Process to Form a One-Piece Auminum Door Inner Panel. SAE Technical Paper 2006–01-0987.

    Google Scholar 

  24. John E. Carsley, Susan Hartfield-Wunsch, Theresa M. Lee, A Demonstration of Local Heat Treatment for the Preform Annealing Process, SAE Technical Paper 2011–01-0538.

    Google Scholar 

  25. J.J. Li, Y. Zhou, S.J. Hu, L.E. Izquierdo, P.E. Krajewski, and T.M. Lee, Optimization of localized annealing for preform anneal forming of aluminum alloys, Transactions of the North American Manufacturing Research Institution of SME, 2010, 411–418.

    Google Scholar 

  26. Jingjing Li, Sooho Kim, Theresa M. Lee, Paul E. Krajewski, Hui Wang, S. Jack Hu. The effect of prestrain and subsequent annealing on the mechanical behavior of AA5182-O. Materials Science and Engineering A 528 (2011) 3905–3914.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Min, J., Carter, J.T., Verma, R. (2012). Tensile Properties Of Three Preform-Annealed Magnesium Alloy Sheets. In: Mathaudhu, S.N., Sillekens, W.H., Neelameggham, N.R., Hort, N. (eds) Magnesium Technology 2012. Springer, Cham. https://doi.org/10.1007/978-3-319-48203-3_79

Download citation

Publish with us

Policies and ethics