Skip to main content

Development of High Strength and Toughness Magnesium Alloy by Grain Boundary Control

  • Chapter
Magnesium Technology 2012

Abstract

The mechanical properties, such as strength and fracture toughness, were investigated using caliber rolled Mg-6wt.%Al-1wt.%Zn (AZ61) alloy, which is the material consists of a constrained plane other than the rolling direction plane and is compressed non-simultaneously from two directions. The initial micro structural observations showed that the caliber rolled AZ61 alloy had a high fraction of low-angle grain boundaries and an average grain size of 2.2µm. In addition, particles with an average size of 100 nm existed in the matrix. This alloy showed a yield strength of 423 MPa and a fracture toughness of 34.1 MPam½. A combination of grain refinement, formation of low-angle grain boundaries and dispersion of fine particles is one of the effective micro structural controls to produce the magnesium alloys with fracture toughness similar to the conventional high strength aluminum alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Somekawa, A. Singh, T. Mukai, “High fracture toughness of extruded Mg-Zn-Y alloy by the synergitic effect of grain refinement and dispersion of quasicrystalline phase”, Scripta Mater. 56 (2007) 1091.

    Article  Google Scholar 

  2. K. Purazang, P. Abachi P, K. U. Kainer, “Investigation of the mechanical behavior of magnesium composites”, Composite. 25 (1994) 296.

    Article  Google Scholar 

  3. J. Koike, “Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature,” Metall. Mater. Trans. 36A (2005) 1689.

    Article  Google Scholar 

  4. H. Somekawa, A. Singh, T. Mukai, “Fracture mechanism of a coase-grained magnesium alloy during fracture toughness testing,” Philo. Mag. Lett. 89 (2009) 2.

    Article  Google Scholar 

  5. M. A. Meyers, O. Vohringer, V. A. Lubarda, “The onest of twinning in metals; A constitutive description,” Acta Mater. 49(2001)4025.

    Article  Google Scholar 

  6. H. Somekawa, T. Mukai, “Effect of grain refinement on fracture toughness in extruded pure magnesium,” Scripta Mater. 53 (2005) 1059.

    Article  Google Scholar 

  7. J-Q. Su, M. Demura, T. Hirano, “Grain boundary fracture strength in Ni3Al bicrystals,” Philo. Mag. A82 (2002) 1541.

    Google Scholar 

  8. S. Hanada, T. Watanabe, O. Izumi, “Deformation behavior ofrecrystallizedNi3Al,” J. Mater. Sei. 21 (1986) 203.

    Article  Google Scholar 

  9. H. Lin, D. P. Pope, “The influence of grain boundary geometry on intergranular crack-propagation in Ni3Al,” Acta Metall. Mater. 41(1993) 553.

    Article  Google Scholar 

  10. H. Somekawa, A. Singh, T. Inoue, T. Mukai, “Enhancing fracture toughness of magnesium alloy by formation of low angle grain boundary structure,” Adv. Eng. Mater. 12 (2010) 837.

    Article  Google Scholar 

  11. R. O. Ritchie, A. W. Thompson, “On macroscopic and microscopic analyses for crack initiation and crack growth toughness in ductile alloys,” Metall. Mater. Trans. 16A (1985)233.

    Article  Google Scholar 

  12. J. F. Knott, “Micromechanisms of fibrous crack extension in engineering alloys,” Mater. Sei. 14 (1980) 327.

    Google Scholar 

  13. T. Inoue, F. Yin, Y. Kimura, “Crystallographic texture of warm caliber rolled low carbon steel,” Mater. Trans. 48 (2007) 2028.

    Article  Google Scholar 

  14. ASTM E1890–99a, Standard Test Method for Measurement of Fracture Toughness, American Society for Testing and Materials, (West Conshohocken, PA).

    Google Scholar 

  15. ASTM E399, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, American Society for Testing and Materials, (West Conshohocken, PA).

    Google Scholar 

  16. Aluminum and Aluminum alloys, ASM Specialty Handbook, ASM International, Materials Park, OH, (1993).

    Google Scholar 

  17. H. Somekawa, Y. Osawa, T. Mukai, “Effect of solid-solution strengthening on fracture toughness in extruded Mg-Zn alloys,” Scripta Mater. 55 (2006) 593.

    Article  Google Scholar 

  18. K. Tanaka, T. Mori, T. Nakamura, “Cavity formation at interface of a spherical inclusion in a plastically deformed matrix,” Philo. Mag. A21 (1970) 267.

    Article  Google Scholar 

  19. S. H. Goods, L. M. Brown, “Nucleation of cavities by plastic deformation,” Acta Metall. 27 (1979) 1.

    Article  Google Scholar 

  20. H. Somekawa, A. Singh, T. Mukai, “Effect of precipitate shapes on fracture toughness in extruded Mg-Zn-Zr magnesium alloys,” J. Mater. Res. 22 (2007) 965.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Somekawa, H., Singh, A., Inoue, T., Mukai, T. (2012). Development of High Strength and Toughness Magnesium Alloy by Grain Boundary Control. In: Mathaudhu, S.N., Sillekens, W.H., Neelameggham, N.R., Hort, N. (eds) Magnesium Technology 2012. Springer, Cham. https://doi.org/10.1007/978-3-319-48203-3_63

Download citation

Publish with us

Policies and ethics