Skip to main content

Carbothermal Production of Magnesium: Csiro’s Magsonic™ Process

  • Chapter
Magnesium Technology 2012

Abstract

Carbothermal production has been recognized as conceptually the simplest and cleanest route to magnesium metal, but has suffered from technical challenges of development and scale-up. Work by CSIRO has now successfully demonstrated the technology using supersonic quenching of magnesium vapor (the MagSonic™ Process). Key barriers to process development have been overcome: the experimental program has achieved sustained operation, no nozzle blockage, minimal reversion, and safe handling of pyrophoric powders. The laboratory equipment has been operated at industrially relevant magnesium vapor concentrations (>25% Mg) for multiple runs with no blockage. Novel computational fluid dynamics (CFD) modeling of the shock quenching and metal vapor condensation has informed nozzle design and is supported by experimental data. Reversion below 10% has been demonstrated, and magnesium successfully purified (>99.9%) from the collected powder. Safe operating procedures have been developed and demonstrated, minimizing the risk of powder explosion. The MagSonic™ Process is now ready to progress to significantly larger scale and continuous operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, T., Why Choose Magnesium? in 4th International Light Metals Technology Conference (LMT 2009). 2009. Gold Coast, AUSTRALIA: Trans Tech Publications Ltd.

    Google Scholar 

  2. Hansgirg, F., Production of Metallic Magnesium. 1932, US1884993.

    Google Scholar 

  3. Dungan, T. A., Production of Magnesium by the Carbothermic Process at Permanente. in Transactions of the American Institute of Mining and Metallurgical Engineers. 1944:(308–314).

    Google Scholar 

  4. Byrns, A. C., Carbothermic Process for Magnesium at Permanente. Chemical Engineering Progress, 1947. 43(4): p. 172–173.

    Google Scholar 

  5. Dean, K. C., Edlund, V. E., and Lawrence, A. G., Quenching Carbothermic Magnesium with Nitrogen. Light Metal Age, 1972. 30(5–6): p. 21–22.

    Google Scholar 

  6. Avery, J. M., Process for Recovering Magnesium. 1983, EP75836-A.

    Google Scholar 

  7. Avery, J. M., Method for Producing Magnesium. 1981, US4290804.

    Google Scholar 

  8. Eckert, C. A., Irwin, R. B., and Graves, C. W., Liquid Metal Solvent Selection: The MgO Reduction Reaction. Industrial & Engineering Chemistry, Process Design and Development, 1984. 23(2): p. 210–217.

    Article  Google Scholar 

  9. Brooks, G., Trang, S., Witt, P., Khan, M. N. H., and Nagle, M., The Carbothermic Route to Magnesium. JOM, 2006. 58(5): p. 51–55.

    Article  Google Scholar 

  10. Brooks, G., Nagle, M., Tassios, S., and Trang, S., The Physical Chemistry of the Carbothermic Route to Magnesium. in Magnesium Technology 2006. 2006. San Antonio, TX, United States: Minerals, Metals and Materials Society, Warrendale, PA 15086, United States (25–31).

    Google Scholar 

  11. Tassios, S., Barton, T. R. D., Constanti-Carey, K. K., Nagle, M. W., and Prentice, L. H., Manufacture of Metal E.G. Magnesium, Involves Performing Carbothermal Reduction of Metal Oxide, Preventing Reformation of Metal Oxide, and Cooling Stream Using Nozzle Heated with Unit Other Than Gas under Specific Condition. 2010, WO2010012042-A1.

    Google Scholar 

  12. Donaldson, A. and Cordes, R. A., Rapid Plasma Quenching for the Production of Ultrafine Metal and Ceramic Powders. JOM, 2005. 57(4): p. 58–63.

    Article  Google Scholar 

  13. Prentice, L., Nagle, M., and Constanti-Carey, K., Impurities in the Carbothermal Production of Magnesium: To 1500 °C. in High Temperature Processing Symposium. 2009. Swinburne University, Hawthorn, Australia.

    Google Scholar 

  14. Prentice, L. and Nagle, M., Mechanism and Kinetics of Reduction of Magnesium Oxide with Carbon. in Magnesium Technology 2009. 2009. San Francisco, CA: The Minerals, Metals, and Materials Society (35–39).

    Google Scholar 

  15. Prentice, L. H., Psuedo-Steady-State Control of High Temperature Gas-Solid Reaction. in Chemeca2011. 2011. Sydney, Australia: Engineers Australia.

    Google Scholar 

  16. Bohnet, M. and Lorenz, T., Separation Efficiency and Pressure Drop of Cyclones at High Temperatures, in Gas Cleaning at High Temperatures, R. Clift and J.P.K. Seville, Editors. 1993, Blackie Academic and Professional: London, UK. p. 17–31.

    Chapter  Google Scholar 

  17. Bohnet, M., Influence of the Gas Temperature on the Separation Efficiency of Aerocyclones. Chemical Engineering and Processing, 1995. 34(3): p. 151–156.

    Article  Google Scholar 

  18. Prentice, L., Wai Poi, N., and Haque, N., Life Cycle Assessment of Carbothermal Production of Magnesium in Australia, in IMA 67th Annual World Magnesium Conference. 2010, International Magnesium Association: Hong Kong, PRC. p. 77–82.

    Google Scholar 

  19. Prentice, L. H., A Kinetic Model for the Carbothermal Production of Magnesium. 2009, CSIRO Process Science and Engineering: Clayton, VIC (Internal Report).

    Google Scholar 

  20. Permanente Squeaks Through, in Time. February 8, 1943.

    Google Scholar 

  21. Yuasa, S., Kawashima, M., and Sakurai, T., Spontaneous Ignition of Ultra-Fine Magnesium Powder without an Original Oxide Coat at Room Temperature in O 2 /N 2 Mixture Streams. Proceedings of the Combustion Institute, 2009. 32(2): p. 1929–1936.

    Article  Google Scholar 

  22. National Fire Protection Authority, NFPA 69 — Standard on Explosion Prevention Systems, 2008 Edition. 2007, NFPA: Quincy, MA.

    Google Scholar 

  23. National Fire Protection Authority, NFPA 484 -Standard for Combustible Metals, 2009 Edition. 2008, NFPA.

    Google Scholar 

  24. Revel, G., Pastol, J.-L., Rouchard, J.-C., and Fromageau, R., Purification of Magnesium by Vacuum Distillation. Metallurgical Transactions B, 1978. 9B(December): p. 665–672.

    Article  Google Scholar 

  25. Hideo, T., Noboru, K., Gotou, T., Akiyoshi, K., and Yuuji, K., Manufacture of Metallic Magnesium. 1979, JP54130413.

    Google Scholar 

  26. Odle, R. R. and McClaine, A. W., Economic Evaluation of a Nozzle-Based Carbothermal Magnesium Process. 2007, Metallurgical Viability Inc: Elkton, MD.

    Google Scholar 

  27. Hori, F., Apparatus for Obtaining Mg and Ca through Carbon Reduction. 1980, US4200264.

    Google Scholar 

  28. Hori, F., Method for Obtaining Mg and Ca through Carbon Reduction. 1979, US4147534.

    Google Scholar 

  29. Engell, J., Frederiksen, J., and Nielsen, K. A., Method of Producing Metallic Magnesium, Magnesium Oxide, or a Refractory Material. 1998, US5803947.

    Google Scholar 

  30. Warren, G. F. and Cameron, A. M., Process for Producing Magnesium. 1985, EP0146986.

    Google Scholar 

  31. Cameron, A. M., Lotens, J. P., Ouwehand, C., and Aurich, V. G., Carbothermic Production of Magnesium, in Pyrometallurgy ‘87. 1987, The Institution of Mining and Metallurgy: London, UK. p. 195–222.

    Google Scholar 

  32. Hong, L., Sohn, H. Y., and Sano, M., Kinetics of Carbothermic Reduction of Magnesia and Zinc Oxide by Thermogravimetric Analysis Technique. Scandinavian Journal of Metallurgy, 2003. 32(3): p. 171–176.

    Article  Google Scholar 

  33. Li, R., Wei, P., and Sano, M., Kinetics and Mechanism of Carbothermic Reduction of Magnesia. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2003. 34(4): p. 433–437.

    Article  Google Scholar 

  34. Nusheh, M., Yoozbashizadeh, H., Askari, M., Kuwata, N., Kawamura, J., Kano, J., Saito, F., Kobatake, H., and Fukuyama, H., Effect of Mechanical Milling on Carbothermic Reduction of Magnesia. ISIJ International, 2010. 50(5): p. 668–672.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Prentice, L.H. et al. (2012). Carbothermal Production of Magnesium: Csiro’s Magsonic™ Process. In: Mathaudhu, S.N., Sillekens, W.H., Neelameggham, N.R., Hort, N. (eds) Magnesium Technology 2012. Springer, Cham. https://doi.org/10.1007/978-3-319-48203-3_6

Download citation

Publish with us

Policies and ethics