Skip to main content

Effect of Strain Rate on the Kinetics of Hot Deformation of AZ31 with Different Initial Texture

  • Chapter
Magnesium Technology 2012

Abstract

In this work, the effects of strain rate and initial texture on the flow behaviour and microstructure evolution on AZ31 Mg alloy were studied by compression tests. Cast plates were, homogenized and hot rolled and then compression tests were performed on samples with longitudinal axes either parallel to the rolling direction (RD) or the normal direction (ND). Compression tests were performed to various strains and samples were quenched to investigate the effect of dynamic recrystallization on the texture and microstructural evolution. Results show that for the samples machined in both rolling and normal direction, the rate of texture evolution is increased by increasing strain rate. The deformation mechanism was changed by increasing the strain rate for ND samples and at strain rate of 1 s-1 from slip dominated flow to twin dominated flow. By using EBSD, the deformation mechanism and twinning types were investigated and double and tension twins were detected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H.B. M. Avedesian, ASM specialty handbook. Magnesium and magnesium alloys. , ASM International, Materials Park, Ohio, 2000.

    Google Scholar 

  2. T. Mukai, Materials Science and Technology, 16 (2000) 1314–1319x.

    Article  Google Scholar 

  3. S.R. Agnew, M.H. Yoo, C.N. Tome, Acta Materialia, 49 (2001)4277–4289.

    Article  Google Scholar 

  4. S. Spigarelli, M.E. Mehtedi, M. Cabibbo, E. Evangelista, J. Kaneko, A. Jäger, V. Gartnerova, Materials Science and Engineering: A, 462 (2007) 197–201.

    Article  Google Scholar 

  5. M.R. Barnett, Materials Science and Engineering: A, 464 (2007) 1–7.

    Article  Google Scholar 

  6. J.W. Christian, S. Mahajan, Progress in Materials Science, 39 (1995) 1–157.

    Article  Google Scholar 

  7. Q. Quo, H.G. Yan, H. Zhang, Z.H. Chen, Z.F. Wang, Materials Science and Technology, 21 (2005) 1349–1354.

    Article  Google Scholar 

  8. Q. Jin, S.-Y. Shim, S.-G. Lim, Scripta Materialia, 55 (2006) 843–846.

    Article  Google Scholar 

  9. M.T.S. E. Essadiqi, A. Javaid, C. Galvani, K. Spencer, S. Yue, and R. Verna, in: International Conference on Light Metals Technology, Saint-Sauveur, Quebec, Canada, 2007, pp. 177–182.

    Google Scholar 

  10. K. Ishikawa, H. Watanabe, T. Mukai, Materials Letters, 59 (2005) 1511–1515.

    Article  Google Scholar 

  11. B.H. Lee, W. Bang, S. Ahn, CS. Lee, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 39 A (2008) 1426–1434.

    Article  Google Scholar 

  12. A.G. Beer, M.R. Barnett, Materials Science and Engineering: A, 423 (2006) 292–299.

    Article  Google Scholar 

  13. H.J. McQueen, E.V. Konopleva, in, 2001, pp. 227–234.

    Google Scholar 

  14. M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Acta Materialia, 52 (2004) 5093–5103.

    Article  Google Scholar 

  15. A. Grosvenor, C.H.J. Davies, in, 2003, pp. 4567–4572.

    Google Scholar 

  16. S.E. Ion, F.J. Humphreys, S.H. White, Acta Metallurgica, 30 (1982) 1909–1919.

    Article  Google Scholar 

  17. D.L. Yin, J.T. Wang, J.Q. Liu, X. Zhao, Journal of Alloys and Compounds, 478 (2009) 789–795.

    Article  Google Scholar 

  18. A.G. Beer, M.R. Barnett, Materials Science and Engineering A, 485 (2008) 318–324.

    Article  Google Scholar 

  19. A. Mwembela, E.B. Konopleva, H.J. McQueen, Scripta Materialia, (1997) 1789–1795.

    Article  Google Scholar 

  20. T. Al-Samman, G. Gottstein, Materials Science and Engineering A, 490 (2008) 411–420.

    Article  Google Scholar 

  21. K. Ishikawa, H. Watanabe, T. Mukai, Journal of Materials Science, 40 (2005) 1577–1582.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Sanjari, M., Nabavi, A., Farzadfar, S.A., Jung, IH., Yue, S., Essadiqi, E. (2012). Effect of Strain Rate on the Kinetics of Hot Deformation of AZ31 with Different Initial Texture. In: Mathaudhu, S.N., Sillekens, W.H., Neelameggham, N.R., Hort, N. (eds) Magnesium Technology 2012. Springer, Cham. https://doi.org/10.1007/978-3-319-48203-3_57

Download citation

Publish with us

Policies and ethics