Skip to main content

The effects of strain and stress state in hot forming of mg AZ31 sheet

  • Chapter
Magnesium Technology 2012

Abstract

Wrought magnesium alloys, such as AZ31 sheet, are of considerable interest for light-weighting of vehicle structural components. The poor room-temperature ductility of AZ31 sheet has been a hindrance to forming the complex part shapes necessary for practical applications. However, the outstanding formability of AZ31 sheet at elevated temperature provides an opportunity to overcome that problem. Complex demonstration components have already been produced at 450°C using gas-pressure forming. Accurate simulations of such hot, gas-pressure forming will be required for the design and optimization exercises necessary if this technology is to be implemented commercially. We report on experiments and simulations used to construct the accurate material constitutive models necessary for finite-element-method simulations. In particular, the effects of strain and stress state on plastic deformation of AZ31 sheet at 450°C are considered in material constitutive model development. Material models are validated against data from simple forming experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.H. Pomeroy: Automotive Engineering, 1922, vol. XI, no. 6, pp. 508–19.

    Google Scholar 

  2. O.S. Cole, A.M. Sherman: Mater. Char, 1995, vol. 35, pp. 3–9.

    Article  Google Scholar 

  3. J.J. Lee, S.P. Lukachko, I.A. Waitz, A. Schäfer: Annual Review of Energy and the Environment, 2001, vol. 26, pp. 167–200.

    Article  Google Scholar 

  4. D. Eliezer, E. Aghion, F.H. Froes: Adv. Perform Mater., 1998, vol. 5, pp. 201–12.

    Article  Google Scholar 

  5. M.M. Avedesian, H. Baker: Magnesium and Magnesium Alloys, ASM International, Materials Park, OH, 1999, pg. iv.

    Google Scholar 

  6. B.L. Mordike, T. Ebert: Mater. Sei. Eng. A, 2001, vol. 302, pp. 37–45.

    Article  Google Scholar 

  7. A.A. Luo: JOM, 2002, vol. 54, no. 2, pp. 42–48.

    Article  Google Scholar 

  8. M.W. Toaz, E.J. Ripling: J. Met., 1956, vol. 8, pp. 936–46.

    Google Scholar 

  9. J.G. Schroth: in Advances in Superplasticity and Superplastic Forming, E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, eds., TMS, Warrendale, PA, 2004, pp. 9–20.

    Google Scholar 

  10. P.E. Krajewski, J.G. Schroth: Mat. Sei. Forum, 2007, vol. 551–552, pp. 3–12.

    Article  Google Scholar 

  11. R. Verma, L.G. Hector, Jr., P.E. Krajewski, E.M. Taleff: JOM, 2009, vol. 61, no. 8, pp. 29–37.

    Article  Google Scholar 

  12. M.K. Khraisheh, F.K. Abu-Farha, M.A. Nazzal, K.J. Weinmann: Annals ofCIRP, 2006, vol. 55, pp. 233.

    Article  Google Scholar 

  13. F.K. Abu-Farha, M.K. Khraisheh: Adv. Eng. Mater, 2007, vol. 9, pp. 777–83.

    Article  Google Scholar 

  14. G. Palumbo, D. Sorgente, L. Tricarico, S.H. Zhang, W.T. Zheng, L.X. Zhou, L.M. Ren: Mat. Set Forum, 2007, vol. 551–552, pp. 317–22.

    Article  Google Scholar 

  15. G. Giuliano, S. Franchitti: Int. J. Mach. Tool Manu., 2008, vol. 48, pp. 1519–1522.

    Article  Google Scholar 

  16. A.-W. El-Morsy, K. Manabe, H. Nishimura: Mater. Trans., 2002, vol. 43, pp. 2443–48.

    Article  Google Scholar 

  17. E.M. Taleff, L.G. Hector, Jr., J.R. Bradley, R. Verma, P.E. Krajewski: Acta Mater., 2009, vol. 57, pp. 2812–22.

    Article  Google Scholar 

  18. E.M. Taleff, L.G. Hector, Jr., R. Verma, P.E. Krajewski, J.-K. Chang: J. Mater. Eng. Perform., 2010, vol. 19, pp. 488–94.

    Article  Google Scholar 

  19. ASTM E 2448–06. Standard Test Method for Determining the Superplastic Properties of Metallic Sheet Materials. ASTM: West Conshohocken, PA. (2006).

    Google Scholar 

  20. W. Kosten Z. Metallkd, 1948, vol. 39, pp. 1–9.

    Google Scholar 

  21. ASTM E 112–96. Standard Test Methods for Determining Average Grain Size. ASTM: West Conshohocken, PA. (1996).

    Google Scholar 

  22. O.D. Sherby and P.M. Burke: Progr. Mater. Sei., 1968, vol. 13, pp. 325–90.

    Google Scholar 

  23. R.V. Moller: “Design and Fabrication of an Instrument to Test the Mechanical Behavior of Aluminum Alloy Sheets During High-Temperature Gas-Pressure Blow Forming,” Thesis, Mechanical Engineering, The University of Texas at Austin, 2008.

    Google Scholar 

  24. Dassault Systèmes Simulia Corp., Abaqus (Version 6.8), Providence, RI.

    Google Scholar 

  25. T.E. Langdon: J. Mater. Sei., 2009, vol. 44, pp. 5998–6010.

    Article  Google Scholar 

  26. M.T. Pèrez-Prado, G. Gonzâlez-Doncel, O.A. Ruano and T.R. McNelley: Acta Mater., 2001, vol. 49, pp. 2259–2268.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Sherek, P.A. et al. (2012). The effects of strain and stress state in hot forming of mg AZ31 sheet. In: Mathaudhu, S.N., Sillekens, W.H., Neelameggham, N.R., Hort, N. (eds) Magnesium Technology 2012. Springer, Cham. https://doi.org/10.1007/978-3-319-48203-3_55

Download citation

Publish with us

Policies and ethics