Skip to main content

Structural Origin of Reversible Twinning, Non-Schmid Effect, Incoherent Twin Boundaries and Texture in Hexagonal Close-Packed Metals

  • Chapter
Magnesium Technology 2012
  • 2102 Accesses

Abstract

Notably the most dominant twinning mode in hexagonal close-packed metals, {101̄2} <101̄1̄> twinning presents abnormal properties such as reversible twinning and non-Schmid effect. The twin boundaries may significantly deviate from the {101̄2} twinning plane. HCP metals also present a strong propensity to develop texture during processing. Through electron backscatter diffraction and high resolution transmission electron microscopy observations, we show that these properties can be well understood from the perspective of the atomic shuffling that dominates in the twinning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Wu, A. Jain, D. W. Brown, g. M. Stoica, S. R. Agnew, B. Clausen, D.E. Fielden, P.K. Liaw, “Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy ZK60”, Acta Mater 56, (2008) 688–695.

    Article  Google Scholar 

  2. A. Jain, S. R. Agnew, “Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet”, Mater Sci Eng A 462(2007)29–36.

    Article  Google Scholar 

  3. C. H. Caceres, T. Sumitomo, M. Veidt, “Pseudoelastic behaviour of cast magnesium AZ91 alloy under cyclic loading-unloading”, Acta Mater 51 (2003) 6211–6218.

    Article  Google Scholar 

  4. [4] M. R Barnett, Z. Keshavarz, A. G. Beer, X. Ma, “Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy”, Acta Mater 56 (2008) 5–15.

    Article  Google Scholar 

  5. P. G Partridge, E. Roberts, “The formation and behaviour of incoherent twin boundaries in hexagonal metals”, Acta Met 12 (1964) 1105–1210.

    Article  Google Scholar 

  6. J. Bohlen, M. R. Nurnberg, J. W. Senn, D. Letzig, S. R. Agnew, “The texture and anisotropy of magnesium-zinc-rare earth alloy sheets”, Acta Mater 55(2007)2101–2112.

    Article  Google Scholar 

  7. S. R. Angew, J. A. Horton, T. M. Lillo, D. W. Brown, “Enhanced ductility in strongly textured magnesium produced by equal channel angular processing”, Scripta Mater 50(2004)377–381.

    Article  Google Scholar 

  8. R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement”, Prog. Mater. Sci. 51(2006)881–981.

    Article  Google Scholar 

  9. G. G. Yapici, I. Karaman, “Common trends in texture evolution of ultra-fine-grained hcp materials during equal channel angular extrusion”, Mat Sci Eng A, 503 (2009) 78–81.

    Article  Google Scholar 

  10. J. J. Fundenberger, M. J. Phillipe, F. Wagner, C. Esling, “Modelling and prediction of mechanical properties for materials with hexagonal symmetry (zinc, titanium and zirconium alloys)”, Acta Mater 45(1997) 4041–4055.

    Article  Google Scholar 

  11. X. Y. Zhang, Y. T. Zhu, Q. Liu, “Deformation twinning in polycrystalline Co during room temperature dynamic plastic deformation”, Scripta Mater 63 (2010) 387–390.

    Article  Google Scholar 

  12. B. Li, E. Ma, “Zonal dislocations mediating {1011} <1012> twinning in magnesium”, Acta Mater 57 (2009) 1734–1743.

    Article  Google Scholar 

  13. N. Thompson, D. J. Millard, “Twin formation in cadmium”, Phil Mag 43 (1952) 422.

    Article  Google Scholar 

  14. B. Li, E. Ma, “Atomic shuffling dominated mechanism for deformation twinning in magnesium”, Phys Rev Lett, 103 (2009)035503.

    Article  Google Scholar 

  15. B. A. Bilby, A. G. Crocker, “The theory of the crystallography of deformation twinning”, Proc Roy Soc. A, 288 (1965) 240–255.

    Article  Google Scholar 

  16. J. W. Christian, S. Mahajan, “Deformation twinning”, Prog. Mater Sci 39 (1995) 1–157.

    Article  Google Scholar 

  17. [17] B. Li, H. El Kadiri, M.F. Horstemeyer, “Extended zonal dislocations mediating {1122} <1123> twinning in titanium”, Philo Mag 2011, accepted.

    Google Scholar 

  18. M. H. Yoo, “Slip, twinning, and fracture in hexagonal close-packed metals”, Met Trans A, 12A, 1981: 409–418.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Li, B., El Kadiri, H., Zhang, X.Y., Mathaudhu, S.N., Ma, Q. (2012). Structural Origin of Reversible Twinning, Non-Schmid Effect, Incoherent Twin Boundaries and Texture in Hexagonal Close-Packed Metals. In: Mathaudhu, S.N., Sillekens, W.H., Neelameggham, N.R., Hort, N. (eds) Magnesium Technology 2012. Springer, Cham. https://doi.org/10.1007/978-3-319-48203-3_20

Download citation

Publish with us

Policies and ethics