Skip to main content

Abstract

Rapid manufacturing technologies are lately gaining interest as alternative manufacturing method. Due to the large parameter sets applicable in these manufacturing methods and their impact on achievable material properties and quality, support of the manufacturing process development by the use of simulation is highly attractive. This is especially true for aerospace applications with their high quality demands and controlled scatter in the resulting material properties. The applicable simulation techniques to these manufacturing methods are manifold. The paper will focus on the melt pool simulation for a SLM (selective laser melting) process which was originally developed for EBM (electron beam melting). It will be discussed in the overall context of a multi-scale simulation within a virtual process chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. GB Olsen, “Computational Design of Hierarchically Structured Materials.” Science 29, Vol.277 (1997), 1237–1242

    Google Scholar 

  2. E. Attar, C. Körner, “Lattice Boltzmann model for thermal free surface flows with liquid-solid phase transition.” International journal of Heat and Fluid Flow, 32 (2011), 156–163

    Article  Google Scholar 

  3. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. (New York, published in the United States by Oxford University Press Inc., 2001)

    Google Scholar 

  4. E. Attar, “Simulation of Selective Electron Beam Melting Processes.” (Ph.D. thesis, Erlangen-Nürnberg University, 2011)

    Google Scholar 

  5. C. Körner, M. Thies, T. Hofmann, N. Thürey and U. Rüde “Lattice Boltzmann model for Free Surface Flow for Modeling Foaming.” Journal of statistical Physics, 121 (10/2005), 179–196

    Article  Google Scholar 

  6. R. Zhang, H. Fan and H. Chen, “A lattice Boltzmann approach for solving scalar transport equations.” Phil. Trans. R. Soc., 369 (2011), 2264–2273

    Article  Google Scholar 

  7. M. Thies, “Lattice Boltzmann Modeling with Free Surfaces Applied to Formation of Metal Foams.” (Ph.D. thesis, Erlangen-Nürnberg University, 2005)

    Google Scholar 

  8. B.J. Keene, “Review of data for the surface tension of pure metals.” International Materials Reviews, 38 (1993), 157–191

    Article  Google Scholar 

  9. G. Pottlacher, H. Hosaeus, B. Wilthan, E. Kaschnitz, A. Seifter, „Thermophysikalische Eigenschaften von festem und flüssigem Inconel 718.“ Thermochimica Acta, 382 (2002), 255–267

    Article  Google Scholar 

  10. R.A.Overfelt, C.A. Matlock and M.E. Wells, “Viscosity of Superalloy 718 by the Oscillating Vessel Technique.” Metallurgical and Materials Transactions, 27B (1996), 698–701

    Article  Google Scholar 

  11. S. Anders, “Numerische Simulation des Energieeintrages zur Modellierung einer Laserstrahlschweißung.” (Ph.D. thesis, Bauhaus-Universität Weimar, 2005)

    Google Scholar 

  12. I. Lazanyi, L. Szirmay-Kalos, “Fresnel Term Approximations for Metals.”, UNION Agency-Science Press, (2005)

    Google Scholar 

  13. W. Meiner, “direktes Selektives Laser Sintern einkomponentiger metallischer Werkstoffe.”, (Ph.D. thesis, RWTH Aachen University, 1999)

    Google Scholar 

  14. C. Wagener, Untersuchung zum Selektiven Lasersintern von Metallen. (Berichte aus der Produktionstechnik, Frauenhofer Institut, Shaker Verlag, Band 11, 2003)

    Google Scholar 

  15. M. Anderson, R. Patwa, Y. C. Shin, “ Laser-assisted machining of Inconel 718 with an economic analysis.” International Journal of Machine Tools & Manufacture, 46 (2006), 1879–1891

    Article  Google Scholar 

  16. C. Sainte-Catherine(I), M. Jeandin, D. Kechemair, J.P. Ricaud, L. Sabatier, “Study of Dynamic Absorptivity at 10.6 µm (CO2) and 1.06 µm (Nd:YAG) Wavelengths as a Function of Temperature.” Journal de Physique, Vol. 1 (1991), 151–157

    Google Scholar 

  17. B. Cowles, D. Backman and R. Dutton, “Verification and Validation of ICME methods and models for aerospace applications.” Integrating Materials and Manufacturing Innovation, 05/2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Maiwald-Immer, T., Göhler, T., Fischersworring-Bunk, A., Körner, C., Osmanlic, F., Bauereiß, A. (2013). Application of ICME Methods for the Development of Rapid Manufacturing Technologies. In: Li, M., Campbell, C., Thornton, K., Holm, E., Gumbsch, P. (eds) Proceedings of the 2nd World Congress on Integrated Computational Materials Engineering (ICME). Springer, Cham. https://doi.org/10.1007/978-3-319-48194-4_12

Download citation

Publish with us

Policies and ethics