Skip to main content

Creep Deformation Mechanisms and Related Microstucture Development of AZ31 Magnesium Alloy

  • Chapter
Book cover Magnesium Technology 2015

Abstract

Because of ever increasing demanded of Magnesium alloys in various industries, high temperature deformation of Mg-Al-Zn alloys (AZ31) at constant stress (i.e. creep) were studied at a wide range of stresses and temperatures to characterize underlying deformation mechanism and dynamic recrystallization (DRX) Various microstructures (e.g. grain growth & DRX) are noted during steady-state creep mechanisms such as grain boundary sliding (GBS), dislocation glide creep (DGC) and dislocation climb creep (DCC). Although a combination of DRX and grain growth is characteristic of low stacking fault energy materials like Mg alloys at elevated temperatures, observation reveals grain growth at low strain-rates (GBS region) along with dynamic recovery (DRV) mechanism. Scanning Electron Microscopic (SEM) characterization of the fracture surface reveals more inter-granular fracture for large grains (i.e. GBS region with DRV process) and more dimple shape fracture for small grains (i.e. DGC & DCC region with DRX).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. W. Chung, H. Watanabe, W.-J. Kim, and K. Higashi, “Creep Deformation Mechanisms in Coarse-Grained Solid Solution Mg Alloys,” Mater. Trans., vol. 45, no. 4, pp. 1266–1271, 2004.

    Article  Google Scholar 

  2. R. Korla and A. H. Chokshi, “A Constitutive Equation for Grain Boundary Sliding: An Experimental Approach,” Metall. Mater. Trans. A, vol. 45, no. 2, pp. 698–708, Oct. 2013.

    Article  Google Scholar 

  3. R. B. Figueiredo and T. G. Langdon, “Developing superplasticity in a magnesium AZ31 alloy by ECAP,” J. Mater. Sci., vol. 43, no. 23–24, pp. 7366–7371, Jul. 2008.

    Google Scholar 

  4. S. Spigarelli, M. El Mehtedi, D. Ciccarelli, and M. Regev, “Effect of grain size on high temperature deformation of AZ31 alloy,” Mater. Sci. Eng. A, vol. 528, no. 22–23, pp. 6919–6926, Aug. 2011.

    Article  Google Scholar 

  5. S. Spigarelli, M. El Mehtedi, M. Cabibbo, E. Evangelista, J. Kaneko, A. Jäger, and V. Gartnerova, “Analysis of high-temperature deformation and microstructure of an AZ31 magnesium alloy,” Mater. Sci. Eng. A, vol. 462, no. 1–2, pp. 197–201, Jul. 2007.

    Article  Google Scholar 

  6. H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, and K. Higashi, “Dislocation creep behavior in Mg-Al-Zn alloys,” Mater. Sci. Eng. A, vol. 407, no. 1–2, pp. 53–61, Oct. 2005.

    Article  Google Scholar 

  7. K. Ishikawa, H. Watanabe, and T. Mukai, “High temperature compressive properties over a wide range of strain rates in an AZ31 magnesium alloy,” J. Mater. Sci., vol. 40, no. 7, pp. 1577–1582, Apr. 2005.

    Article  Google Scholar 

  8. A. G. Beer and M. R. Barnett, “Influence of initial microstructure on the hot working flow stress of Mg-3A1–1Zn,” Mater. Sci. Eng. A, vol. 423, no. 1–2, pp. 292–299, May 2006.

    Article  Google Scholar 

  9. S.-H. Choi, J. K. Kim, B. J. Kim, and Y. B. Park, “The effect of grain size distribution on the shape of flow stress curves of Mg-3Al-lZn under uniaxial compression,” Mater. Sci. Eng. A, vol. 488, no. 1–2, pp. 458–467, Aug. 2008.

    Article  Google Scholar 

  10. H.-K. Kim and W.-J. Kim, “Creep behavior of AZ31 magnesium alloy in low temperature range between 423 K and 473 K,” J. Mater. Sci., vol. 42, no. 15, pp. 6171–6176, Apr. 2007.

    Article  Google Scholar 

  11. J. A. D. E. L. Valle and O. A. Ruano, “Deformation Mechanisms Responsible for the High Ductility in a Mg AZ31 Alloy Analyzed by Electron Backscattered Diffraction,” Metallurgical and Material Trans A., vol. 36, no. June, pp. 1427–1438, 2005.

    Article  Google Scholar 

  12. S. W. Chung, C. S. Chung, and D. Kum, “Super plasticity in thin Magnesium alloy sheets and deformation mechanism maps for magnesium.,” Acta Mater., vol. 49, pp. 3337–3345, 2001.

    Article  Google Scholar 

  13. K. Kitazono, E. Sato, and K. Kuribayashi, “Internal stress superplasticity in polycrystalline AZ31 magnesium alloy,” Scr. Mater., vol. 44, no. 12, pp. 2695–2702, Jun. 2001.

    Article  Google Scholar 

  14. P. Shahbeigi Roodposhti, A. Sarkar, and K. L. Murty, “A review of the influence of production methods and intermetallic phase on the creep properties of AZ91,” Magnes. Technol., pp. 59–64, 2014.

    Google Scholar 

  15. K. L. Murty, “Grain boundary sliding and viscous glide mechanisms of high temperature creep in Pb-6% Sn,” Scr. Metall., vol. 7, pp. 1083–1088, 1973.

    Article  Google Scholar 

  16. T. G. Langdon, “A unified approach to grain boundary sliding in creep and superplasticity,” Acta Metall., vol. 42, no. 7, pp. 2437–2443, 1994.

    Article  Google Scholar 

  17. H. Somekawa, H. Watanabe, and T. Mukai, “Effect of solute atoms on grain boundary sliding in magnesium alloys,” Philos. Mag., vol. 94, no. 12, pp. 1345–1360, Apr. 2014.

    Article  Google Scholar 

  18. S. Ansary, R. Mahmudi, and M. J. Esfandyarpour, “Creep of AZ31 Mg alloy: A comparison of impression and tensile behavior,” Mater. Sci. Eng. A, vol. 556, pp. 9–14, Oct. 2012.

    Article  Google Scholar 

  19. J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, and K. Maruyama, “Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523 K,” Mater. Trans., vol. 44, no. 4, pp. 445–451,2003.

    Article  Google Scholar 

  20. J. Deng, Y. C. Lin, S. Li, J. Chen, and Y. Ding, “Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy,” Materials & Design, vol. 49, pp. 209–219, 2013.

    Article  Google Scholar 

  21. a. G. Beer and M. R. Barnett, “Microstructural Development during Hot Working of Mg-3Al-1Zn,” Metall. Mater. Trans. A, vol. 38, no. 8, pp. 1856–1867, Jul. 2007.

    Article  Google Scholar 

  22. S. Gourdet and F. Montheillet, “A model of continuous dynamic recrystallization,” Acta Mater., vol. 51, no. 9, pp. 2685–2699, May 2003.

    Article  Google Scholar 

  23. S. Gourdet and F. Montheillet, “Effects of dynamic grain boundary migration during the hot compression of high stacking fault energy metals,” Acta Mater., vol. 50, no. 11, pp. 2801–2812, Jun. 2002.

    Article  Google Scholar 

  24. N. Xiao, C. Zheng, D. Li, and Y. Li, “A simulation of dynamic recrystallization by coupling a cellular automaton method with a topology deformation technique,” Comput. Mater. Sci., vol. 41, no. 3, pp. 366–374, Jan. 2008.

    Article  Google Scholar 

  25. G. Kugler and R. Turk, “Modeling the dynamic recrystallization under multi-stage hot deformation,” Acta Mater., vol. 52, no. 15, pp. 4659–4668, Sep. 2004.

    Article  Google Scholar 

  26. X. LIU, L. LI, F. HE, J. ZHOU, B. ZHU, and L. ZHANG, “Simulation on dynamic recrystallization behavior of AZ31 magnesium alloy using cellular automaton method coupling Laasraoui-Jonas model,” Trans. Nonferrous Met. Soc. China, vol. 23, no. 9, pp. 2692–2699, Sep. 2013.

    Article  Google Scholar 

  27. P. Shahbeigi Roodposhti, “A Review on the Equal Channel Angular Process of Commercially pure Titanium,” Proc. MS&T14, pp. 1559–1566, 2014.

    Google Scholar 

  28. R. Ding and Z. Guo, “Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization,” Acta Mater., vol. 49, no. 16, pp. 3163–3175, Sep. 2001.

    Article  Google Scholar 

  29. W. Roberts and B. Ahlblom, “A nucleation criterion for dynamic recrystallization during hot working,” Acta Metall., vol. 26, no. 5, pp. 801–813, May 1978.

    Article  Google Scholar 

  30. H. Watanabe, et al. “Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization.pdf” Mater. Trans., Vol. 42, pp. 1200–1205,2001.

    Article  Google Scholar 

  31. Y. C. Lin, M.-S. Chen, and J. Zhong, “Microstructural evolution in 42CrMo steel during compression at elevated temperatures,” Mater. Lett., vol. 62, no. 14, pp. 2132–2135, May 2008.

    Article  Google Scholar 

  32. S. Mandal, a. K. Bhaduri, and V. Subramanya Sarma, “Influence of State of Stress on Dynamic Recrystallization in a Titanium-Modified Austenitic Stainless Steel,” Metall. Mater. Trans. A, vol. 43, no. 2, pp. 410–414, Dec. 2011.

    Article  Google Scholar 

  33. Y. C. Lin, M.-S. Chen, and J. Zhong, “Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel,” J. Mater. Process. Technol., vol. 205, no. 1–3, pp. 308–315, Aug. 2008.

    Article  Google Scholar 

  34. F. A. Mohamed and T. G. Langdon, “The transition from dislocation climb to viscous glide in creep of solid solution alloys,” Acta Metall., vol. 22, no. 6, pp. 779–788, Jun. 1974.

    Article  Google Scholar 

  35. K. L. Murty and J. Ravi, “Transitions in creep mechanisms and creep anisotropy in Zr-1Nb-1Sn-0.2Fe sheet,” Nucl. Eng. Des., vol. 156, no. 3, pp. 359–371, Jun. 1995.

    Article  Google Scholar 

  36. Y. Zhou, B. Devarajan, and K. Murty, “Short-term rupture studies of Zircaloy-4 and Nb-modified Zircaloy-4 tubing using closed-end internal pressurization,” Nucl. Eng. Des., vol. 228, no. 1–3, pp. 3–13, Mar. 2004.

    Article  Google Scholar 

  37. K. Linga Murty, “Transitional creep mechanisms in Al-5Mg at high stresses,” Scr. Metall., vol. 7, no. 9, pp. 899–903, Sep. 1973.

    Article  Google Scholar 

  38. S. Spigarelli and M. El Mehtedi, “Creep as an extension of hot working: A unified approach to high temperature deformation of AZ31 alloy,” Mater. Sci. Eng. A, vol. 527, no. 21–22, pp. 5708–5714, Aug. 2010.

    Article  Google Scholar 

  39. A. H. Chokshi, “Cavity nucleation and growth in superplasticity,” Mater. Sci. Eng. A, vol. 410–411, no. May, pp. 95–99, Nov. 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Roodposhti, P.S., Sarkar, A., Murty, K.L. (2015). Creep Deformation Mechanisms and Related Microstucture Development of AZ31 Magnesium Alloy. In: Manuel, M.V., Singh, A., Alderman, M., Neelameggham, N.R. (eds) Magnesium Technology 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-48185-2_9

Download citation

Publish with us

Policies and ethics